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THE EFFECT OF LARGE DELAYS ON BEAM RF PHASE LOCK LOOPS 
J. E. Griffin - Fermilah* 

Introduction 

The frequency of the rf accelerating voltage in 
many synchrotrons is generated by a voltage controlled 
oscillator (VCO) which is driven by a phase comparison 
between the phase of the bunched beam yd the phase of 
the rf accelerating cavity gap voltage. Frequently 
several rf accelerating cavities locatedatdifferent 
parts of the ring must be used. In an accelerating 
regime with particle speeds significantly smaller than 
c it is normally necessary to sweep the rf frequency. In 
such a situation it is necessary that the cable delay 
from the VCO to all accelerating cavities be equal to 
that of the most distant cavity. Additional cable 
delay must be inserted to return a gap voltage phase 
signal to the phase comparitor. As accelerators grow 
larger the total cable delay which must be introduced 
into the VCO phase lock loop also grows larger. These 
large delays affect the stability and response char- 
acteristics of the phase lock loop and dictate, to 
SOW estent, the nature of other compensating net- 
works which may be introduced. The stability of sucl; 
systems has been investigated by Gumowski and others 
for both the linearized small signal case and for 
large signal cases. It is the purpose of this note 
to present a graphical way of examining these effects 
which may assist in understanding the requirements 
for loop compensating networks, 
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Fig. 1. Block Diagram Showing the Essential Features 
of a Beam-RF Phase Lock Loop. 

Figure 1 is a block diagram representing an 
accelerator phase lock loop. The input signal $i(t) 
would be a signal representing the beam phase, delayed 
by a time T2 to make it compatible at all frequencies 
with the accelerating cavity gap voltage. Assume that 
the phase comparitor creates an output voltage which 
is related linearly to the phase difference 
$i(t) - qo(t-T)O2(t) through the factor p (which has 
dimensions of volts and magnitude about 1 volt per 
radian) . 01(t) is an operator function of time which 
represents a linear passive network and an amplifier 
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with real gain G. The VCO generates an output angu- 
lar frequency 

‘lCtl = ‘0 + PYe 

where (1) o is the rest (or zero input voltage) frequency, 
ve is the error voltage delivered to the VCO input, 
and g is the response characteristiclof the VCO, 
halring dimensions of (volt-second.$ and magnitude 
typically of order 271 x10 radians per volt-second. 
O?(t) is an operator function of time describing the 
r;sponse of the rf cavity to small amplitude fre- 
quency modulated signals. To first order the cavit! 
can be represented by a phase lag network with 
corner frequency determined by the cavity time con- 
stant Q/w. The LaPlace transform of an operator 
function of time operating on some function of time 
is expressed: 

&,ol(t)$(t,+ G+)“(s). 

The transformed 
lock-loop is: 

transfer function of the phase- 

Q)(s) = 
gPGoCl(S)@i(S) =.$G*Ciis) Qi(sl 

s + gPG,G~(s)G~(s)e-sT D(s) - ill 

Let gpGoGl(s) G2(s) = X(s) with dimensions of 
1 (time) - . The small signal transient response of 

the phase-lock loop can be expressed in terms of the 
roots of the characteristic equation D(s)lp3. In 
general negative real parts of the roots result in 
damped solutions while positive real parts result in 
anti-damped (or exponentially growing) solutions. 
Imaginary parts of the roots contribute oscillatory 
components which decay or grow depending on the sign 
of the real parts. It is clear that only solutions 
with negative real parts are allowed for stability. 
It is very probable that imaginary components to the 
roots, which allow damped oscillatory response to 
noise trasients, may contribute to phase space dilu- 
tion of bunched beams resulting from bucket shaking 
at frequencies near the synchrotron frequency. This 
is especially true in proton machines with long 
acceleration times, or those which store bunched 
beams. It may, in some cases, be possible to increase 
the frequency of the damped oscillatory response to 
such an extent that no adverse effect occurs, but 
when appreciable delay is introduced, the required 
increase in frequency will almost certainly generate 
an anti-damped solution. So, while small signal s ta- 
bility is assured by admitting only those feedback 
configurations which result in roots with negative 
real parts, an added requirement, that the imaginary 
parts of the roots be zero, may be imposed. 

Single Phase Lag Network 

Consider first the very simple case in which the 
amplifier response is independent of frequency, i.e. 
Cl(S) = 1. If the cavity transfer function is repre- 
sented by a single lag network, 

Go = +, CL = dp), 

then the characteristic equation becomes 

D(s) = s(s+a) + aAe 
-ST 

. (2) 

For the limiting case of T=O, a root locus plot as a 
function of gain A is shown in Figure 2a. For A=0 a 
pair of real roots exist at s=O and ~=-a, As the 
gain is increased, these roots move together along 
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negative real axis, and for gain A=a/4 the roots 
meet at s =-CC/~. For higher gains a conjugate pair 
of complex roots with constant negative real part 
appears, with the complex part increasing without 
bound as the gain is increased. 

Another limitation resulting from the delay can 
be seen by examining Equation 2 for purely imaglnq 
solutions, i.e. let s = Jo. This results in the pair 
of equations 

Since we are concerned only with negative real 
roots , it is useful to equate s in equation 2 with a 
negative real number -6. 

7 

s = UtjU+-6, (3) 

Iqu ~0s 1~1: = to- 

(5) 
A sin UT = II\ , 

For the same delay, T= 1).5ru-1, as A is increased 
a solution occurs when A ‘I 2,150 and (*i = 1.3a. For 

Then equation 2 can be rewritten, expressing the 
gain A as a function of fi 

&(u - 6)e-6T A(6) = (4) 

gains larger than this the complex poles move into 
the right half-plane and oscillations with ex;?onenti- 
ally growing amplitudes will occur. ‘4 root 10~11s plot 
for this situation is shown in Figure 2~. 

CL 

This exnression is shown in Figure 2b for the 
case T = 0 (solid curve). The behavror of the negative 
real roots can now be examined by observing the points 
at which constant values of ,1 intercept the curve. 
For A = 0 the intercepts are at 3 = 0; or. As A is 
increased the roots move toward each other and 
coalesce at the maximum point on the curve where 
A= a/4. For values of A larger than that no real 
solutions exist . 

For the simple phase lag situation the gain of 
the loop is limited to magnitude less than 0.25~. 
For an rf4system operating near 40 MIz with Q =l(MO, 
d = 4nxlO , A natural “gain” factor for the PII, is 
the product of the I%0 and the phasebcomI~ar i tor “fi;l in” 
functions, which might well he 2V10 . So the gain 
limitations imposed by loop stability require ;Ittcnll- 
ntion of the signal levels by 3 factor near IO” with 
attendant degeneration of performance of the fccdhnclc 
loop * 

The delay time T can be expressed in terms of 
the inverse of the corner frequency a. The dashed 
curve in Figure 2b is A(S) plotted with the delay time 
T= O,SU-~, The effect of introducing the delay is 
immediately obvious. The two roots start again at 
0; -CY but the decaying exponential function forces 
the magnitude of the entire curve down so that, for 
the chosen value of T, the maximum allownl~le &n is 
reduced to about 0.2~. 

Phase Retard Compensation 

The I’LL trans ient performance can sornetims lw 
improved by introduction of an act i1.e network such 
that the product OI(t)O;!(t) is a $ase-retard (lag- 
lead) network with the trans formed transfer iunct ion 

C(s) = s+ 1 
Ks+a ((1 i 

4 I iu where k is a factor usually in the range from 10 to 
I S-plane 100. If s is again limited to values -6 the charac- 
I 
I teristic equation becomes 

- I d 

“/-- 
17) I -6 (pi = k6) t A(1 - 6)e-‘FT = 0 

A=0.25a I 
I 

or, again expressing the gain as a function of S 
I A(6) = s(u - k6)e-“T 

(a) (81 cu. - 6 1 -. 
A(6) is shown in Figure 3a for the zero delay case. 
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Fig, 2a. Root locus plot of phase-lock look with single 
lag network. b . Loop gain plotted as a func- 
tion of the negative real part of the trans- Fig. 3a. A(6) for PLL with phase retard compensation 
form variable s. Solid curve-no delay. Dashed and no delay. b , Corresponding root - locus 
&e-moderate delay. c, Root locus plot with 
single lag network and moderate delay. 

plot * 
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For zero gain real roots exist at 6 =O; ak 
-1 

. At a 
very small gain the real roots coalesce near the 
origin and there follows an interval of gain for which 
no real roots exist. For much larger values of gain 
a pair of real roots appears near 2ct and as the gain 
is increased toward infinity one root moves to a 
while the other moves toward infinity. For k = 10 the 
value of gain at which a pair of real roots reappears 
is about A= 3%. The well known root locus plot for 
this sys tern is shown for reference in Figure 3b, 4 

The effect of finite delay can now be seen 
graphically by examining A(6) for several values of 
the delay time T. Clearly the effect of the decaying 
exponential factor is to decrease A(6) for large 6. 
In Figure 4a the function A(6) is shown for a “small” 
delay T. For zero gain an additional root appears 
at infinity. As the gain is increased this root moves 
to smaller values of 6. A(6) still has a minimum near 
2,~ where two real roots appear. As the gain is 
increased beyond this point one root moves to c(, the 
other coalesces \+fith the root moving from infinity 
when A reaches the maximum of A(S) at some large 
value of 6. Beyond this point these two roots 
become complex and eventually move into the right 
half-plane. There now exists a limited range of 
higher gain in which real roots can exist and the 
detailed nature of this range depends on the relation- 
ship which exists between k, ~1, and T. A root locus 
plot for this case is shown in Figure 4b. 

By examining the derivative of Equation 8 with 
respect to 6 for large k it is easy to show that the 
requirement for some region of high gain real roots is 
ciT be less than 0.17. As the delay is increased the 
upper corner frequency c1 must be decreased resulting 
in a decrease in the allowable loop gain. For nT 
products which allow a range of real roots it is a 
simple matter to calculate the r ge of allow ble 
gains. -gn If, for example, T = 10 s, ct = 2~x10 t 

(corner frequency 10 KHz), and k = 10, the allowable 

to the “gain” available from the VCO described earlier. 

‘The phase retard network described, standing alone, 
is somewhat unrealistic because, in the presence of 
the rf cavity corner frequency, it implies ‘an ampli- 
fier with gain increasing with frequency without 
bound. An additional lag network with a corner fre- 
quency well above a can be added to the formalism 
eas ily . It is apparent that the effect of such an 
additional lag network will be to exacerbate the 
effect of the delay by further decreasing the function 
A(s) at large 6, making it more difficult to realize 
a region of real roots at large gain, 

Conclusion 
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The large delays introduced into beam contra 
feedback systems by the requirement that widely spaced 
components be contained within the loop can result 
in deterioration of feedback loop performance, If 
the loop is to have non-oscillatory damped response 
to noise transients, the delay introduces stringent 
requirements on the characteristics of other networks 
within the loop and on the loop gain. These require- 
ments can be extracted rather easily for various 
internal network configurations by expressing the 
“gain” A as a function of the negative real part of 
the transform variable. 

(3) (b) 
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