© 1979 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. IEEE Transactions on Nuclear Science, Vol. NS-26, No. 3, June 1979

LEDA-F STORAGE RING DEDICATED TO THE FREE ELECTRON LASER OPERATION. PRELIMINARY DESIGN

Roberto Barbini⁺, Giuseppe Dattoli⁻, Tommaso Letardi⁺, Angelo Marino⁺, Alberto Renieri⁺, Gaetano Vignola⁺

ABSTRACT

The preliminary design of an electron storage ring dedicated to the free electron laser operation, is presented. The main feature of the proposed laser is the complete tunability in the wavelength range 0.3 μm < λ < 20 μm with an output average power of the order of 1 kW and an efficiency, electron beam-laser beam, of $\sim 2\%$.

1. INTRODUCTION

In this paper is presented the preliminary design of the electron storage ring LEDA-F dedicated to the free electron laser (FEL) operation [1].

The electron beam (e.b.) and laser beam (1.b.) dynamics in a storage ring (SR) FEL has been worked out in Refs [2-7]. The main 1.b.parameters are (for the notations see Table 1).

(a) Wavelength

$$\lambda = (\lambda_{q}/2) (1 + K^{2}) (m_{o}c^{2}/E)^{2},$$

$$(K = eB_{w} \lambda_{q}/(\sqrt{2} \cdot 2\pi m_{o}c^{2}))$$
(1)

(b) Output power/bunch

$$P = (\Delta \omega / \omega)_{0} \chi(\xi) P_{S} (\gamma_{M} / \gamma_{T}), \qquad (2)$$

where we have defined (Σ_1 = 1.b. cross section)

$$\xi = \frac{8\pi^2}{\gamma_T} (r_0/ec) \sqrt{2\lambda/\lambda_q} (\Delta\omega/\omega)_0^{-3} (\lambda L_w/\Sigma_L) \frac{K^2}{(1+K^2)^{\frac{3}{2}}} \frac{Iv_s}{\alpha_c}$$
(3)

 $P_S = U \cdot I/e = synchrotron emitted power/bunch,(4).$ The function χ is plotted in Fig. 1. The

Fig. 1 - χ versus ξ

- + C.N.E.N. Divisione Nuove Attività Centro di Frascati, C.P. 65, 00044 Frascati (Rome) Italy
- Guest Researcher

3836

physical meaning of ξ is straightforward, namely it is proportional to the ratio between the small signal gain (for the unperturbed e.b.) and the optical cavity loss γ_T .

(c) Bandwidth and photon bunch length

The "natural" laser bandwidth is given by (as order of magnitude)

$$\frac{\Delta v}{v} \sim \left(\left(\lambda / \left(2\sigma_{z} \right) \right) \left(\Delta \omega / \omega \right)_{0} \right)^{\frac{1}{2}}$$
 (5)

The corresponding photon bunch length reads,

$$L \cong \sigma_{z} \left(\left(\lambda / \left(2\sigma_{z} \right) \right) \left(\Delta \omega / \omega \right)^{-1} \right)^{\frac{1}{2}}$$
(6)

It is possible to reduce $\Delta\nu/\nu$ with an intracavity etalon. The minimum bandwidth is related to the maximum l.b. length, which cannot be greater than the e.b. one, i.e.

$$\sigma_{L}(\max) \sim \sigma_{z} \Rightarrow (\Delta \nu / \nu)(\min) \sim \lambda / (2\sigma_{z})$$
 (7)

A further narrowing of the bandwidth strongly reduces the output power.

2. DESIGN CRITERIA

The SR and FEL parameters have been optimized [7] to achieve the maximum output power in the wavelength region $\lambda \sim 10{\div}20~\mu\text{m},$ at the bunch average current I ~ 200 mA. The optimization has been worked out under the following constraints: L $_w(\text{max}) \sim 10$ m, B $_w(\text{max}) \sim 5$ kG, ν_s/α_c (max) $\sim \nu_1$.

We have optimized the laser performances at 200 mA per bunch in order to have a good laser operation also at relatively low current. However we plan to store a larger current, namely I \sim 1A. Therefore the laser performances are evaluated (in the following) for such a current.

For fixed SR and FEL parameters, we can obtain a further increasing of the laser output by utilizing special high magnetic field insertions, enhancing the emitted synchrotron radiation power P_{ς} (see Eq. (2)).

3. MACHINE LAYOUT

<u>Magnetic lattice</u>. The basic SR layout (LEDA-Fl) is shown in Fig. 2. The machine has a twofold symmetry. Each quarter consists of three standard cells (D/2 - 0 - F - 0 - D/2) and one half insertion with two bending magnets and four independent quadrupoles (q-poles). The off-energy function η is non vanishing only in the region between the bending magnets, where are located the sextupoles (S) for chromaticity correction. The half laser straight section is 5.5 m long and the total free space in the whole machine is 54.4 m.

In a second time (LEDA-F2) a special high magnetic field system could be inserted in each quarter of machine, in place of two standard cells (see Fig. 2). This special insertion

T	A	В	L	Е	Ι
-	_	-	_		_

x,y,z, = radial, vertical and longitudinal coordinates					
= FEL REGION, M = MAX VALUE	LEDA-F1	LEDA-F2			
- Beam					
E = energy (MeV)	750	750			
· I = current/bunch (A) · number of bunches	6	6			
 U = synchrotron radiation energy/turn (keV) r.m.s. dimensions (full coupling) (mm) 	15.5	72.6			
σ * , σ [*] γ	2.3, 2.5	1.1, 1.5			
$\sigma_{\mathbf{x}}^{M}, \sigma_{\mathbf{y}}^{M}$ (laser off)	2.3, 2.5	1.6, 1.9			
d ^M (laser on)	∿ 24	∿ 24			
σ_{\perp} (laser off, laser on)	8.9,∿217	15.9,~217			
σ (laser off, laser on) (%)	.04,∿1	.08,∿1			
ϵ , i , and i , i					
L = orbit length (m)	130.828	130.841			
$\omega_0/2\pi = c/L (MHz)$	2.2915 2x11	2.2913 2x11			
- number of standard cells	12	4			
· ₂ = bending radius (m) · bending field index	0	0			
Max bending field (kG)	12.5 50x 45	12.5			
· Q-pole length (m) · Max field gradient (kG/cm)	.4	.6			
Sextupole Tength (m)	8x.5	8x.5			
ocusing parameters	A 075	7 1 25			
$v_x = v_y = betatron tunes$	4.875	7.120			
$\alpha_{\rm C}$ = momentum compaction	9.56x10 ⁻⁵	9.17x10 ⁻³			
$C_x, C_y (= (E/v) (\Delta v/\Delta E))$	-1.3,-1.5	-2.3,-2.4			
τ_z , τ_x , τ_y = damping times (ms)	21,46,42	4.5,9.2,9			
A _x = A _y = emittance (mm x mrad)	2.2	0.4			
<u>r.f</u> .		60.700			
· ω _{RF/2π} =R.F. frequency (MHz) · h = ω _{RF/2π} - (ω	68.745	30			
$- w_{\rm RF}^{\prime \omega}$	1.50	1.44			
$\omega_{s/2\pi}$ = synchrotron frequency (kHz)	21.9	21.0			
$v_{s} = \omega_{s} / \omega_{o}$	9.56x10 °	9.17x10			
- max power to the e.b. (kW) - ε _M = relative energy acceptance (%)	93 7.3	435 7.3			
EL					
λ_q , $L_w = wiggler$ wavelength and length (m)	. 42	10.08			
$(\Delta \omega / \omega)_0 = \Lambda_0 / (2 L_W)$ Cavity length = L/6 (m)	2	.8			

Fig. 2 - Basic layout (LEDA-F1) and radiator insertions (LEDA-F2) W = wiggler laser R = Radiator S = sextupoles

consists of a 1.6 m long superconducting high field (\sim 50 kG) wiggler (radiator) and six special q-poles, whose function is to keep $v_{X,Y}$ constant during the raising up of the radiator magnetic field. In this configuration the total available free space is \sim 22.4 m.In this preliminary stage of the project we have not worked out in detail the design of the R.F., vacuum and injection systems. The main requests to be fulfilled are the following:

Vacuum. The high synchrotron radiation power (\sim 70 kW/A, radiators on), requires a good cooling and shielding of the vacuum chamber.

<u>Injection</u>. Linear accelerator operating at the energy ~ 250 MeV, peak current ~ 100 mA, pulse duration $\sim 2 \ \mu$ s, repetition rate $\sim 1 \ \text{Hz}$, energy spread $\sim 1\%$, emittance $\lesssim 5 \ \text{mm x mrad}$ (injection time $\sim 200 \ \text{s/A}$).

In Table I are reported the LEDA-F and FEL parameters. In Fig. 3 are plotted the optical functions β and η .

4. LASER PERFORMANCES

In Table I are reported the laser main parameters. The cavity mirrors are chosen so as to have the minimum average l.b. cross--section in the wiggler region. The average laser power output (for six bunches) and the bandwidth are plotted in Fig. 4 for $\lambda = 0.3 \pm 20 \, \mu$ m. It is also reported (curve (d)), the minimum bandwidth we can obtain with an intracavity etalon (Eq. (7)). The frequency tuning is obtained by changing the wiggler magnetic field (Eq. (1)) and operating the SR at the maximum energy (750 MeV).

The maximum efficiency 1.b. \rightarrow e.b. defined as the ratio between the power radiated into the laser mode and the total synchrotron power is roughly given by (see eq. (2) and Fig.1): e.b. \rightarrow 1.b. efficiency $\sim (\Delta \omega / \omega)_{0} \sim 2\%$.

Fig. 3 - Optical functions and magnetic structure F,D = focusing and defocusing (radial) q-pole, B = bending magnet

Fig. 4 - P vs λ : (a) LEDA-F1, (b) LEDA-F2 $\Delta v / v$ vs λ : (c) without etalon, (d) with etalon

REFERENCES

- [1] D.A.G. Deacon et al.: Phys. Rev.Lett. 38, 892(1977)
- [2] A. Bambini and A. Renieri: Nuovo Cimento Lett. 21, 399 (1978)
- [3] G. Dattoli and A. Renieri: Nuovo Cimento Lett. 24 121 (1979)
- [4] A. Bambini et al. to appear in Phys. Rev. A
- [5] A. Renieri: Reports 77,30, 77.33, 78.9, 78.25 CNEN - Centro di Frascati, Italy - and paper presented at this Conference.
- [6] A. Renieri: Internal Report in preparation
- [7] R. Barbini et al.: Internal Report in preparation