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COMPUTiiT1ONA.L IIETHOD FOR THE DISPERSION, BETATKON FUNCTIONS AND C. 0 .D, IN NONLINEAK LATTICE 

Yukihide Kamiya” 

Summary 

A computational method for the dispersion, beta- 
tron functions and the closed orbit distortion in the 
lattice with nonlinear elements is presented. We apply 
the method to the lattice with sextupole elements and 
with magnetic imperfections of KEK PHOTON FACTORY 
STORAGE RING (PF-RING), and present the numerical 
results. 

I. Introduction 

In accelerators and storage rings, the sextupole 
magnets are usually installed to compensate the natu- 
ral chromaticity. In the lattice with nonlinear ele- 
ments such as sextupole magnets, the linear dynamics 
of particle is disturbed by the nonlinear field, and 
the higher-order effec s of the momentum deviation 

15 hp/p become important. If we restrict ourselves to 
the oscillation with a small amplitude, the motion of 
particles in the nonlinear lattice is characterized by 
the dispersion and betatron functions and the closed 
orbit. distortion, similar to the case of the linear 
lattice. The method of computing the dispersion and 
betatron functions assuming no field errors and no 
coupling between horizontal and vertical 

51 
etatron 

oscillations has been studied previously: the outline 
of which will be described in Sec.11. We have develop- 
ed the computational method of the closed orbit dis- 
tortion (C.O,D.) and orbit parameters including field 
errors and coupling effects. Sec.111 will describe 
the computational method as well as the method of the 
corrections of C.O.D., rl 

will present the numeric 8 
and coupling. Finally we 

1 examples in Set, IV. 

II. blomentum demdent di.sJersion and betatron --- -~_- -__~ .____- ~ 

functions without field errors 2) 

Our aim is at first to obtain the equilibrium or- 
bit of off-momentum particles or the di.spersion func- 
tion, and then to calculate the betatron function 
around that orbit. The computational steps are as 
follows; (i) to make the linearized transfer matrix 
for each nonlinear element in the vicinity of the 
initial guess of the equilibrium orbit, (ii) to cal- 
culate the periodic solution of particle motion from 
the linearized transfer matrix for one revolution, and 
correct the initial guess of dispersion function, 
(iii) subsequently to iterate such procedures until a 
sufficient convergence is obtained, (iv) finally to 
calculate the betatron function from the last lineariz- 
ed matrix, The generalized procedures of obtaining 
the linearized matrix with nonlinear element start 
from the equation of the transverse motion of a parti- 
cle in the nonlinear element, 

x” + f(x, 9p/p) = 0, (1) 

where f is the nonlinear function of x and Op/p+ The 
formal solution g of Eq.1 will be given as follows; 

X 7 
e 

1: I 

dXi’ x;, hP/P) 
x’ = 

T 

g’ (Xi, x;, APiP) (2) 
1 
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where i and e denote the entrance aqd exit of the ele- 
ment, The first-order correction Ax is obtained by 
linearizing the function g, 

For example, the linearized matrix of transforming the 
horizontal motion in the sextupole magnet that is as- 
sumed to be a thin lens, is given by, 

(4) 

at the first iteration. Here x 
eq 

is the equilibrium 
orbit of off-momentum particle, i.e. x = r:Cp/p. The 
(2,3)-component of the matrix should bEqreplaced by 
-i (Cl>; ) from the second iteration. The linearized 
matric “2 s of other elements are given in the Ref.2. 

C.O,D. 

The C,O,D. c including coupling due to the mag- 
netic imperfectio& in the lattice with nonlinear ele- 
ment can be calculated by a method quite similar to 
that in Sec.11. choosing the C.O.D. without nonlinear 
magnets as initial guess. The linearized equation of 
C.O.D. has been solved by the Gauss elimination method. 

Dispersion 

The dispersion around the C-0 
culated by the same method as that 
transfer matrix of dispersion Q in 
ment with misalignment 6x is given 
cause of its significant effect to 
The C.O.D. xc and equilibrium orbi 

.D. can be also cal- 
of C.O.D. Only the 
the quadrupole ele- 
as an example, be- 
the distortion of ri. 

tX of off-momentum 
eq 
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particle in an unrotated quadrupole magnet are ex- 
pressed by, 

xi t Kx = K6x x” 
C eq 

f K/ (lfAp/p)x 
eq 

= K6x/ (l+bp/p) . 

Since the dispersion is given by, 

+ 
rl = lim (;E 

Ap/p-+O eq 
- +A~ip , 

the following matrix representation is obtained, 

iy = M$ t M$f t is; 

where 

M;I = aM(Aplp)lA~l~Iap/~=O , cb = ~~(AP/P) IAP/PI~~~~,~. 

MO and M(Ap/p) denote the usual transfer matrices 
without errors of right moqentum and off-momentum par- 
ticles, respectively, and b i.3 the vectqr due to the 
misalignment nnd is given by b = (I-M)6x. The transfer 
matrix for a rotated quadrypole magnet is e$sil ob-+ 
tained by replacing M and b by M-‘MM and 4 6x-M MM 6x, 
where > 

‘I;: 
is the rotation matrix. ’ Pufting the !bov!! 

obtaine dispersion as initial guess, the momentum- 
dependent dispersion can be computed in the similar 
manner as in Sec.11. The transfer matrix of the 
momentum-dependent dispersion in a quadrupole magnet 
is represented by, 

+e 
n = M(hp/p:)r? + (~l(Ap!p):~t~(Ap!p)-~~)/Ap/p. 

The nonzero off-diagonal elements of the linearized 
matrix for the sextupole magnet are given as follows; 

-2X (xc+nxWp) 
m21= -m43 = - 

Wc+n AP/P) 

l+Ap/p , m23 = m41 = 
l+bfp 

and at first iteration mz5 and rn45 are, 

m25 = -IL-.-. 
1+&/p b-(-v;-2 (~xyripY,)+(x~-Y;) IAP/P 

m45 =-- 
l:~p,p [wy+- yxc+rixy,) +xcyc. I API P , 

and from second iteration, 

m25 = ~~!‘-I~)~-(A-~~)~IAP/P, m45 = j$$$nxi\lyA~ JP 

Coupled betatron oscillation 

The coupled betatron oscillations and the beam 
parameters - damping time, beam s 
extensively analyzed by Ripken?” f 

ze etc. - have been 
To compute the 

eigenvectors and eigenvalues of betatron oscillation, 
6) we use the symplectic rotation, Computing the eigen- 

vectors at one position, we can easily obtain those at 
the other places by multiplying the transfer matrices. 
Note here that the transfer matrix of the canonical 
variables for one revolution equals to that of the co- 
ordinates and their derivatives at the location without 
the longitudinal magnetic fields, even if the fields 
exist in other places around the ring. The computa- 
tional steps for the eigenvectors are as follows; (i> 
to decompose the transfer matrix into 

Icos0, D-‘sin0 A 0 
T=RUR-’ , R=( 

-Dsin0, Icos0 ), u=co B) 

6) where the notations are those of Edwards and Teng, 
and A and B are in the familiar form of Courant-Snyder, 
(ii) to calculate the symplectic normalized eigenvectors 
of A and B, (iii) and then to multiply the eigenvectors 
by R to obtain the eigenvectors of T. The method 
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explain d here would be similar to the computer code 78 PETROS. To simplify the computation of beam parameters, 
we rotate the co-ordinate systems in the quadrupole 
magnets with rotated errors by the same angles, The 
chromaticity is analytically calculated In each ele- 
ment, and the other beam parameters are numerically 
integrated by Simpson’s formula and Richardson’s extra- 
poration, dividing each element into forty subsections. 

Correction of C.O.D., vertical dispersion 

In this report, we use the least squares method a,91 

for the correction of C.O.D. and TJ 
rection matrix of thick lenses. TX’ 

but use the cor- 
e correction ma$rix 

is formally obtained from the transformation G of xc 
for one revolution as follows; 

-f 
x = 

C 

where z is 
From Eq.5, 
correctors 

AGc = 

the vector of strengths of 
the first-order correction 
is given by, 

(I - aG/a;: )-‘aG,‘d A:. 

(5) 

the correctors. 
of C.O.D. by the 

(6) 

We make the correction matrix from the first and third 
rows of the matrix of Eq.6. Practically, we cannot but 
use the linear transformation for G. Similarly, we 
obtain the rlv-correction matrix from 

ii = (I-aH/&)-’ [aH/a~(T-aG/a:)-‘aG/~~~~H/~~]~~, (7) 

where H is the transformation of n for one revolution. 
The first and second terms of the bracket in the right- 
hand side of Eq.7 denote the effects of indirect and 
direct corrections, respectively. The first term con- 
tains the effects of C.O.D. in quadrupole ma 

dYets and those of C.O.D. and ilx in sextupole magnets. 

Coupling control 

The betatron coupling will be corrected by setting 
skew quadrupole magnets in the lattice and 
method of Guignard’s coupling coefficient!’ Y 

sing the 
Here, the 

measurement method of the betatron coupling are not 
described, but the method and possibility of the coupl- 
ing control are explained. Following Guignard, we can 
write the equation of the coupling control as follows; 

Caixi f ReK = C cos0, Cbixi + IRK = C sin0, (8) 

where x. is the strength of the i-th correction skew 
quadrupble magnet, K the coupling coefficient due to 
rotated errors of quadrupole magnets, C,6 the modulus 
and phase of the desired coupling coefficient, and a 
b. the real and imaginary parts of the coefficient a 
tke i-th skew quadrupole magnet with the strength of 

f ’ 

unity. The contribution to the coupling coefficient 
due to C.O.D. in the sextupole magnet3 is qeglested 
here. We can solve Eq.9 in the form x = sa t tb, 
choosing 0 so as to minimize the Euclidean norm of the 
vector of skew quadrupole strengths. 

IV. Numerical examples 

The preliminary results computed by the method in 
Sections II and III are shown in Figures for the lat- 
tice of KEK PF-RING. The following r.m.s. values of 
errors are assumed; relative field error in bending 
magnets = 0.1 %, tilt error in bending magnets = 0.2 
mrad, rotated quadrupole error = 0.2 mrad, horizontal 
and vertical misalignments of quadrupole magnets = 0.1 
mm, pOSitiOn measurement error “PM = 0.2 mm, kick er- 
ror in vertical corrections aVD = 0.01 mrad. We have 
tentatively assumed that the field gradient error in 
quadrupole magnet is zero. The U in Fig.1 to Fig.3 
denotes the unbiased standard deviation over 100 
‘machines’, The ‘machine with errors’ in Fig.4 to 



Fig.8 denotes the case with the largest XC.0.D. among 
100 ‘machines’. Here the correction of C,O.D, has not 
been iterated, and the re-correction of the chromatic- 
ity by sextupole magnets has not also been made. For 
the correction of n , it is assumed that the measurement 
error of r+ is zero? This may be an impractical as- 
sumption for PF-RING since the measurement errors of 
n would be comparable to the small n, itself after 
tie C.O.D. correction. In Figs. 7 anii 8, the nominal 
tunes have been shifted perpendicular to the line of 
difference resonance in the tune diagram, by changing 
the strengths of the quadrupole magnets in the inser- 
tions. The remaining coupling and tune shift after 
the coupling correction (ic=C=O) as seen in Figs.G and 
8 is due to the vertical C.O.D. in the sextupole mag- 
nets. The other parameters not shown in Figures - 
r.m.s, values of C.O.D. and the distortion of disper- 
sion at the positions of all elements, damping times 
and beam envelopes etc. - have also been computed. 
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