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OPTIMIZATION OF HEAVY ION FOCUSSING SYSTEMS WITH LARGE NUMBERS OF MAGNETS 
John Steinhoff* 

Abstract 

A method is presented for efficiently 
optimizing heavy ion focussing systems con- 
sisting of large numbers of magnets. The 
method is based on a technique for computing 
gradients of performance functions in systems 
where the transfer fuction at each point de- 
pends only on the state (trajectory) and con- 
trol function (magnet strength) at that point. 
A computer program developed to implement 
this method is also described. The program 
can be used to minimize final spot size to- 
gether with maximum bore radius for systems 
with both quadrupole and sextupole components, 
Geometric and chromatic abberations are in- 
cluded, with chromatic ones computed non- 
perturbatively. The results of some initial 
studies done for ideal quadrupole systems 
with large momentum spread (fl. 5%) are pre- 
sented. Also, some results for systems that 
can simultaneously focus several beams, each 
with different momentum or charge, are pre- 
sented. 

Introduction 

Final focussing systems for ion beams 
can be designed perturbatively: Starting 
with a system of dipoles and quadrupoles de- 
signed to focus the beam to first order, geo- 
metric and chromatic abberations can be com- 
puted for the system and higher order multi- 
pole elements added as corrections. If these 
corrections are small, and if other con- 
straints are not put on the system, then this 
approach can quickly lead to a focussing sys- 
tern,, If, however, the abberations in the 
initial system are large, or many constraints 
such as maximum bore radius at various points 
in the system are imposed, then one set of 
corrective magnets may not be sufficient. 
For example, a large beam momentum spread 
would result in a number of terms propor- 
tional to CAP/p)’ and higher contributing 
significantly to the spot size at the target. 
In this case, the term-by- term corrective 
procedure may result in a prohibitively large 
number of additional magnets in the system. 
At some point it may be better to adjust the 
entire set of magnets simultaneously. 

In this note we describe two optimiza- 
tion schemes that we have been working with 
that may provide systematic procedures for 
simultaneously computing the field strengths 
of a large number of magnets. Rather than 
attempting to drive a set of abberation terms 
to zero, these schemes optimize a “perform- 
ance” function which may, for instance, be 
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the total number of particles reaching a 1 mm 
target, assuming a particular initial phase 
space distribution. Also, constraints such 
as beam radius in the magnets can easily be 
accommodated by adding a “penalty” function, 
related to the degree of violation of the 
constraint. 

The usefulness of these algorithms in 
our case depends on whether they converge in 
a reasonable amount of computing time. Also, 
these schemes find local optima, not global 
ones, and their usefulness depends on whether 
or not there are a large number of local opti- 
mal configurations. As an initial attempt to 
answer some of these questions, we worked 
with a model system consisting only of ideal 
quadrupoles. No geometric abberations or 
space charge effects were included, but large 
be/p with resulting large chromatic abbera- 

tions was assumed. Numerical results of a 
series of optimization runs will be given for 
this case; comparisons of the two optimization 
schemes will be presented as well as other 
runs which give a measure of the uniqueness 
of the solution found and the ability to ad- 
just higher order abberations. 

In addition to quadrupoles, we have de- 
veloped codes to treat systems with dipoles 
an sextupoles. We describe how these magnets 
can be included in the optimization schemes. 
At the time of writing, no new numerical re- 
sults were available for these systems. 

Equations of Motion 

1. Quadrupoles 

The equations describing the transverse 
coordinates (X,X’, y, ‘/’ ) of a parti le after 
traversing an ideal quadrupole are d. 

(z;) = rlluj) C:,. 

[;+J = Iv (-II;) (y’;) 

i 

! CCd 
M(u) = [ 4 SW c-k-l) 

% I 
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where g/p is the charge/momentum, G the 
field gradient and ZM the quadrupole length. 

2. Dipoles 

Expanding equation(d) in Brown t2) in 

transverse coordinates (but not intaAp/p) : 

f.+ $0cr-r)h x-hzZ’+Q’~m+f=] 
I 

y% h x/y/ 
where h is the field strength of the dipole 
divided by f’/q. Instead of developing a 
perturbation expansion for the entire system, 
for our purposes it is convenient to develop 
an expansion for each individual magnet. In 
this way the higher order terms resulting 
from, say, second order terms of one magnet 
operating on second order terms of an up- 
stream magnet are retained. Although both 
of our optimization schemes can be used with 
the exact equations of motion, the form given 
here is more convenient for our initial study 
We then have 

where S is the longitudinal coordinate and 

x,l’= h 5- Its -w h4& IX 

$L - ($/,2#g-t&+; $$-+yf 

e 

y& h xA/ y/t 
The equations for %A and YA are solved 
first, and the result used in the solution 
for XS and y8 . The result is 

~,=~,&j CO)Z* +Swro/ 
r,=k dC(s)+Pfsh~@ 

S($‘(5is> - s> + h “fs C(?;)) lo/ 
+j,“(cc(s)+dst,)r:+ h (cGw+d’%&! 
+2 h3d sts, Co) K x,/+ ;$j$$ Yo” 

c c5) s [ /- cas lk+o’ 

$= - (I-s)/c/+O 
- -p/ ~(l+sw-~~=~ 

;i - S/Cl - P) 
$‘=: - S/C/- $I2 
C = -ZSVC3 I/+$)“) 

d= - ~3+3GXrL)/{CCI+W 

c’z - (3+3 c +~s’)/cL~c-~1)) 
d’=: (3+3S-#J/(6 Cl-s2)) 

where k = C-S,ba h and the coordinates 
at the beginning of the magnetare X,,,l,/,Y,~v,!t 

3. Sextupoles 

The above procedure, when used for the 
second order sextupole equations 

x N = - cl (x2- y’) 

Y I’= Rti x y 

results in 

?A= Z&XI 

y ,= -M(~2(Xd-%a)+f3(XI%~-%%/)~~~~~~~ * 
Yn=ys +sx’ 
yo = 2 ~(@*y* +&Is yI/c%a+~; kY$ 

H = cs*Qm$*P~ 
where B is the field strength and qp is the 
aperture. 

At each step (evaluation of the per- 
formance function) in our optimization run 
we propagate a set of particles with initially 
prescribed values of % , x/5 Y , v’ and 6 
through the system using these equations, 

Optimization Methods 

1. Performance Function 

The function to be minimized can consist 
of beam coordinates at the target or in the 
magne t s . We have used 

f(k)= 1 MI; [ /71i(Nr’))K+( ,‘; (‘t’)lKj 

where the wi are weighting functions repre- 
senting the initial phase space density for 
particles near particle i , and X; (de/) and 
Y; cd+/) are the coordinates at the target. 

We have used values of 2 and 4 for)( . For 
shaping the beam, we have added the function 

p ‘2 5 cl, T: ci/; j(;Yi(J))‘+ (~ “‘>23 

where 3 is the magnet number. By adjusting 
the 45 , we can decrease the beam size at 
various points in the system (with somewhat 
of an increase in spot size, for a given 
magnet configuration). 

‘In the curvilinear system defined in Ref. (2). 



2. Random Search(3) For plK) , we define the vector 

This optimization method involves first 
choosing an initial set of strengths [ Ujf 
and computing the coordinates E %i[T>,y;(y>3 
and ,P= P’“)+f’B . The u~/S are then per- 
turbed; ,j”e3~ ~je Vclrjr Ri I where 
the R; are random numbers with zero mean 
and unit variance and the VUf’j are con- 
s tants chosen initially to be - 10m2 ! uj I . 
A new value of f? is then computed. If the 
new p is smaller than the old, the old 
values of 2 and [ U;] are replaced by the new 
ones. Otherwise, the old values are kept. 
The calculation is then repeated. 

As P approaches a minimum and the L/; 
approach their optimal values, we reach a 
point at which 1 L$- U;““I<( VUvj . At this 
point the probability of finding a smaller 
p becomes very small and the VtiPj must 
be decreased, We obtained good results by 
dividing the \rqfj by 2 whenever there 
were 50 consecutive runs with no decrease 
inp . 

The main advantages of the random search 
are that it is trivial to program and gra- 
dients do not have to be computed. Also, 
“hard” constraints (inequalities) can easily 
be included. 

3. Gradient Search(4) 

To minimize p , a sequence of one di- 
mensional searches are done in the N di- 
mensional U; space. Each search is in a 
direction determined by the present and past 
gradient of P : 

As a result of each search a value of d is 
determined that minimizes p[f (133) in one 
direction. The starting point for each 
search is the minimum point found in the 
previous search. In each step of the com- 
putation, the gradient terms must be com- 
puted, as well as a number of .f? values 
needed to find a one dimensional minimum. 
For general functions of Al variables the 
gradient computation can take as much com- 
puting time as FJI function (p ) evaluations 
and, for large d , the gradient part of the 
optimization can increase the total time by 
almost a factor of d , For “trajectory” 
equations, however, where P has the above 
dependence on X(T) and y (3)) and where 
there is a recurrence relation which gives 
the coordinates at 3+f in terms of the 
coordinates at 5” and UT, we can compute 
the A/ gradient terms in only several times 
the computing time required to compute f , 
regardless of r\l . 

pu $13) = Ktcr; [(td@&$-&; ;u,rL&k/Jfi& 

V 3kJp 3 
where . 

(&, q , 03,% x;/, Ld&/~ ) i&q, y/o 
Then, 

a P 
5, 

= 

and ptf$&) obeys the recurrence relation 

p*; (3) z 1 Pd. C=-/J 32;-?$$J 
P 3 . 

Thus, after a forward sweep, in which the 
t.&JJ) !s are computed, the d gradient 

terms can be developed in a single backward 
sweep. 

This method is applied very easily to 
ideal b ladrupoles since the model is linear, 
as discussed in some detail in (1). For 
dipoles, if the field and length are kept 
fixed (as we are doing in our initial study), 
the model.derived above can be used to com- 
pute >~~$cJ+I\ / Jti,,‘&) very easily since the 
coefficients in the equations can be pre- 
stored. The sextupole model can easily be 
used for both au; lr*J/> tii Cs) and bw,‘tr+ll 
/bCl;rcalculations (we are varying the sextu- 
pole strength) , 

Similar recurrence relations can be 
written for p8 : Define 

then, 

x8 = 2 1 p+-+rJ $zi.w ad7 i 3 f 
and, 

PB:(x’) =rPe~~~~l,~~+*~~w~~~)s~,o+~~~)6yI) 
4. 

Results 
8 

1. Convergence Speed 

Optimization runs were made for an ideal 
quadrupole system with 16 magnets and large 
(21.5%) momentum spread using both the ran- 
dom and gradient search algorithms. The mag- 
nets were .5 meters long with a 1 meter 
drift space in between, and the upstream beam 
was taken to be an ellipse in phase space 
with axes 

‘)I;(~) = y;c0) = g c m. 
x(10)= vi/(o)t .I mr. 

The system was started in anfob configura- 
tion (alternating fields), and the function 
PI%) was minimized. Spot size vs. computing 
time (for a Data General NOVA 800 minicom- 
puter) is plotted in Fig, 1 for the two meth- 
ods . It can be seen that the gradient method 
is about eight times faster than the random 
search method. Also, when the random search 
method appeared to converge, the spot size 
was still about 25% larger than the result of 
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the gradient scheme (which had converged to a 
point with very small gradients). 8. 

2. Uniqueness of Solution 

In almost every case run with the gra- 
dient scheme, the final magnet configuration 
consisted of a triplet at the end preceeded 
by a 5-20 meter “drift space” where the 
strengths had been driven to zero, In Re$.c.!!. 
we present the final 8 magnet strengths for a 
28 magnet system. The initial configuration 
was an FaDo lattice with IGl equal to 20 
Teslas/meter. The random search scheme did 
not find these configurations in a reason- 
able amount of time. 

l5-O. I \ 
i Y 
: ,O.O 
L 1 

IO LO 10 40 

computing TFme - ninutes 
TO 

Fig. 1 Reduction of Focal Spot Size vs. 
Computing Time for Random and 
Gradient Search Algorithms. 

3. Importance of Higher Order Abberations 

60. 

The function p was defined to be 
the sum of the squares of the spot sizes for 
particle sets with momenta P: PO , (~f~0°5)Po, 
(12 .dp. and ( Ik .o/r)p, . This func- 
tion would be useful if the beam had a step 
function momentum dependence from (1-0 O/S”) ,& 

to (I,’ * Q4po 
a 28 magnet system’is 

The target spot size for 
presented in Fig.2 as 

a function of A=fjpe-i . The importance of 
the higher order terms ( wt/p)n> in minimiz - 
ing the spot size near the extreme momenta 
can be seen. 

We also found another nonlinear effect: 
We were able to simultaneously focus, with 
the same+system, two separate beams each 
with a - .25% momentum spread but differing 
in p. by 20-40%. The spot sizes found 
were about 3mm. for both beams, as opposed 
to 1.5-2 mm. for a single beam. This might 
be useful for “telescoping” beams(5) with 
different momenta, since both beams could 
have the same charge (y/g is not constrained 
to be the same). 

” u 
y c. 
z x * 
‘i * L w 4. 

0. 0.9 i.0 1.5 X.0 

1 Ai z lo-’ 

Fig. 2 Target Spot Size vs. Momentum 
Deviation: 28 Magnet Sys tern Optim- 
ized for &1,5%Momentum Spread. 

Conclusion 

We have found that gradient optimiza- 
tion schemes can be efficient and versatile 
for optimizing spot sizes in simple ion 
focussing systems. Although higher order 
terms could be controlled, the effect of 
first order chromatic abberations, which 
cannot be made to vanish in a quadrupole 
sys tern, contributed to a large spot size 
(3-5 mm) for large dp/p (1.5%). Towards 
reducing these terms, we are currently 
working with a system with dipoles and sextu- 
poles designed to cancel first order chro- 
matic abberations. 
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