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THE LONGITUDINAL COUPLING IMPEDANCE OF STEP DISCONTINUITIES IN A CIRCULAR BEAM TUBE*
H. Hahn and S, Zatzt

Abstract

The longitudinal coupling impedance presented by
a single wall discontinuity to the circulatfng beam in
a circular accelerator or storage ring is usuvally an-
alvzed bty consldering a "developed" periodic struc-
ture, However, the typlcal parameters are often such
that {t becomes adequate to treat the discontinuity as
a noeperlodic problem, Using medal field matching
methods, solutions were derived for the cases of a
single ae well as a double-step discontinuity in a clr-
cular heanm tube, Numerical results are presented in
this paper and the typleal behavier at low frequency,
at resonence, ard above cut-off {s discussed,

I, Introduction

The coupling impedance presented by a single wall
disconticulty to the circulating beam in a circular
accelerator or storsge ring 1s usually analyzed by con-
sidering a "developed” periodic structure,l,? Hewever,
the typical parameters ave such that it becomes ade-
guate Lo treat the cavity as a nonperiodic problem,

For example, below the cut-off frequency of the vacuum
chamber the circumference of the machine {s very much
larger than the cut-off wave length, and the circular
character of the machine becomes Inconsequential, The
same teasoning holds above cut-off frequency, {f the
circumference s also much larger than the attenmaticn
lengeh, typlcally on the order of a few 100 m. Further-
Tore, sinle measurements are conveniently performed
only on structures of small dimensions the coupling im-
pedance of a single discentinuity must e understocd,
These arguments suggest the need for an analvtical
treatmect of the nonpericdic case,

In the presert paper the simple, yet representa-
tive case of a double-step cross scction change in a
circular vacuam chamber is analyzed (Fig, 1). The case
of 2 modulated beam {rteracting with a single cavity at
resorance hes heen previcusly considered by varfous
The present study was inspired by Fereward

4

authors, S
who enalvzed a single-step cross section change in a
very wide rectangular chamber.’ His result was that a
single-step discontinuity represents a nonresonant in-
ductance below cut-off but that Lt exhibits alsc a
lossy resistive component ahove cut-off, The scope of
this parer ls chosen to cover the single as well as
deuble-step discontinuity in order to include the study
of resonant effects,

The single-step solutior could be obtained by con-
aidering very long lossy cavitles, The analysis {s
simolified by treating the two cases separately; the
losses thea enter only as perturbation of the i{deal
sclution, The mathematical approach taken here em-
ploys fleld expansions {n subregions and field match-
ing along ccommon surfaces. A judiclous choice of the
subregions is important to achleve rapid convergency
and transparency of the formulae, Matching of flelds
on transverse planes® appears rarticularly sutted to
the protler on hand. However, space limitations made
it vecessary to omit all mathematical der{vations,

The scope of this paper is limited to the case of
extreme relativistic particles, XNevertheless, the re-
sulting solutiosn exhibits all expected qualitative
features of & single cavity’: Low-frequency inductance
cavity resonances below cut-off damped omly by wall
losses, cavity rescnances above cut-off damped by
radlatioc {nte the vacuum chamber. A quantitative
comparison with published results, as far as avafll-
able, indicates general but not complete agreement,

In particular, it was found that an earlifer version
of this p:speré {n whick only the dominant space

)
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harmonica were retained ylelded marginal results. Two
agpects of the single-step solution are worth pointing
out: (1) The 2/n can show a resonance-like enhance-
ment at the cut-off frequency of the larger tube, and
(2) the Z/n well above the cut-off frequency of the
larger tube 1s mostly resistive in nature and decreases
{nversely with frequercy.

I1, Fields in a $rmooth Vacuum Chanber

For the purpose cf the subsequent analysis we at
first consider a modulated particle beam traveling with
velocity vec on the axls of a smooth vacuum charber,
The beam is assumed to be stiff, that {s, flelds gerer-
ated by the environment do not change the initi{al mo-
tion or charge distribution, To simplify the expres-
sions a filamentary current of unit strength is assumed,
1 = exp(-Jkz)exp(jut). Wave number k and frequency w
are related by usk in natural units (caig=l), Omitting
the common time factor exp(jut), one can write for the
three fleld components E,p=0 and Epp=Hop=(27r) . The
field configuration of the filamentary beam is that of
a coaxial transmission line, which i{s at the basis of
bench measurements of the coupling impedance,’

The well-known expression for the coupling impe-
dance of the smooth vacuum chamber:C cannot be derived
using the assumption cf a filamentary beam {and cer-
taialy not {f vec), BRowever, {t is thought that the

calculation of the additional coupling i{mpedence resuly-
{rg from the discontinuities in the vacuum chamber will
net be affected by these simplifications, It must be

expected that the extreme relacivistic solution loses
its validity at frequencles at or above 3y times the
cut-cff frequency of the beam =ube,l

I1X, Single-Sten Solution

General Expressions, The general expressions for
the fields in the presence of a single-step are repre-
sented as the sum of (1) the smooth-wall beam fields
and (2) the additicnal Ifelds required to satisfy the
bcundary conditions, E=Ep+Epy and Hetp#lpy,  The beum
fields are given above, whereas the induced fields are
written as series with expansion coefficlenzs ¢y, and
¢y The solution is obtained by the usual medal field
matching which leads to the matrix equaticns i{n the ex-
pansion coefficients (AkIA+kITyelTay and clepcll,
Having determined the expansion coefflcients, one ob-
tains the longitudinal coupling impedarce, =i,
from «®

7 = 'f-w[EﬂM%ﬂ)e
Note that the usual stability criterion! {nvolves the
coupling impedance, Z, divided by the mode number, n=kR,
with R the average radius of the machine, Evaluating
the inte%ral vields p and i as welghted sums over all
cé and cn1A

In & clrcular machine, geometry dictates the exclu-
sive presence of double-step discontinuities albei: far
removed from each other and nencormunicating, As a
consequence the p terms due to an up and down step
carcel and the beam sees only the A term, e,

Z/r=10fR per single step,
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Fig. 1. Geometry,
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Low-Frequency Limit. The expressicns for the coup- ‘OE" Vo o "]

1ing impedance of a single atep in the low-frequency ; !
1imit were derived and numerical results obtained. In s )
Fig. 2 the step inductance, actually A/(d-b), is plot- :
ted as function of the step slze, S=d/b. Also shown
are results published by Keil and Zotter.l The prob-
lem considered here is comparable to the scattering of N } )
waves by a step in the outer conductor of a coaxial 2 AN
waveguide, for which Marcuvitzl? quctes the result ? ' & s \
(8=5-1<<1) - -1 .
AM(d=-bye (2n) " 6(1 + 2 ¢n 26 ) g - N
Good agreement is found, On the other hand, the first LS N
order approximationB 7 2 ‘\
A(d-D) = &/ {2 jol JLUOI); C; \\

shows only a marginal agreement. N ) i, ~ ~

Frequency Dependence. In Fig. 3 the behavior of : f . .
the step inductance, normalized to its value at zero e ~

frequency is shown. Below cut-off of the larger tubte i
& is strictly real, above cut-off an imaginary compe- !
nent of A corresponding to beam loss into the vacuum | }

|

chamber appears. Since the analysis is based on loas- T Re Thf )
less structures, the energy is dissipated at infinity. T Imis

In practice, the energy is dissipated within about onme

attenuation length from the discontinuity. Whereas [ .

the character of A changes at the cut-off frequency 09 ¢

w=jg1fd of the larger tube, passing through cut-off FREQUENCY wo ™ oy
w=301/b of the smaller tube produces only minor ripples.

The mbsolute value of |A| over a wider frequency
range 1s shown in Fig. 4. A strong resonance-like en- e
hancement can be seen at all frequencles corresponding

to wegon/d. Strictly speaking, this is not a resonance ] 5

Fig. 3. Single-step frequency dependence.

T

since the impedance is inductive above as well as below
the peak. The enhancement is strongest at cut-off
{n=1) and its value dependent on the step size (shown
as solid curve in Fig. 5). At very high frequencies,

w>>3g1/d, the character of A is essentially imaginary ° ! |
({.e. the coupling impedance is resistive). The value I fr:\
of the "resonant' peaks decreases llke s ° i 4
[Al = Awlgd™/w, which is depicted by the dashed < /i ‘}l‘\\\
curve in Fig, 5. F4 // ! \\\‘“ AN :
4 - VAR :
IV. Double-Step Solution R \\ \\\ VS i
5 S o \ .
The Low-Frequency Limit. The general solution for ‘g: A\\\ S
the lossless double-step {(Fig., 1), valid at all fre- a A |
quencies, s obtained by the same approach used above. ::n e !
|

The results for the low-frequency limit are given in
Fig. 6, where the quantity ZR/n(d-b) is plotted as a
function of the step size with the cavity length, 2g/d,
as parameter. As expected, & long cavity (2g>>d) be-
haves like two single steps. A comparison of the re-
sults 1in Fig. 6 with the approximation®
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Fig, 2. Single-step inductance at low frequency. Fig. 5. Enhancement of single-step inductance.
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shows reasonable agreement for sufficiently large step
s{zes ($>1,1) and short cavities {(2g<d).

Cavity above Cut-off, Above the cut-off frequency
w=iyib of the beam tube, the coupling {mpedance shows
numerons peaks corresponding to the cavity resonances,
The presence of the beam tube provides a natural damp-
irg of the resonances; nevertheless, the first reso-
nances above sut-off can show a marked enhancement over
the low frequency value. A full parametric study is
bevord the scope of this paper. The results shown in
Fig. 7 may serve as typical example, where the fre-
quency deperderce of A/A(0) is mapped onto a Smith
chtart, The reduction of the resonant peaks with fre-
quency has heen srgfigd rumerically and, grossc modo,

a variation with w ~*7 was found., However, the sampling
of cases was aot large eTough tg preclude a somewhat
different deperdence (& to 4 ° are expected to be

the limita}.

Cavity at Rescnance. Below cut-off of the beam
tube, the cavity created by the double-step disconti-
nuity will bave one or more sharp resonances, The
largest coupling impedance is presented by the dominant
T}%lg-lLke resonance, The relevant parameter, coupling
impedance Z divided by quallty factor Q, may be derived
from the homogenous fleld equations, L.e, with the beam
absenL,l} according to

Loy
] L, HH*dV
The results ave conveniently presented by normalizing
ther to the value for a pure Ty cavity without bean
tube, for which

. ka2
with U = ff; (EZTM)T=O e dz .

2. ,
2(b=0) 2 sto(j8/¢)
¢ 3 2. g/d
"I N1 Ugp)

The variation of Z2/2(b=C) with the beam tube radius is
shown in Fig., 8 for the TMOIO'likE resonarce., The
cavity length g/d = ¥T/j5y corresponds roughly to the
worst case of strongest coupling.
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