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Abstract 

Transfer matrix methods are widely used to calcu- 
late properties of particle orbits as they pass 
through linear beam elements such as drift spaces, 
bending magnets, and quadrupoles. A new method of 
“transfer maps” has been developed to also include 
nonlinear transformations that result from nonlinear 
beam elements such as sextupoles, octupoles, etc. The 
method of transfer maps therefore provides a complete 
theory of beam transport through both linear and non- 
linear elements. In particular, it is possible to use 
transfer maps in the context of circular machines to 
study tune shifts , structure resonances, stop band 
widths, emittance growth rates, etc. Consequently, 
the method of transfer maps provides an alternative to 
the method of Hamiltonian perturbation theory usually 
employed for this purpose. 

Introduction 

Consider a particle orbit that traverses a given 
beam element . Let the symbol z i denote collectively 
the initial conditions for the particle orbit as it 
enters the element. For example, zi may refer to 
transverse coordinates and momenta or may also be 
enlarged to include the total momentum and differen- 
tial transit time. Similarly, let zf denote the 
final conditions as the orbit leaves the beam ele- 
- Then the connection between the initial and ment . 
final conditions will be written as 

z f = Mzi, (1) 

and the relationship M will be called a transfer map 
for the element in question. 

Next, consider a particle orbit that passes 
through a succession of beam elements. It is clear 
that there is also a net transfer map for any sequence 
of beam elements and that this net transfer map is 
given by the product of the transfer maps of the ele- 
ments comprising the sequence. In particular, for a 
circular machine there is a transfer map that 
describes the effect of making one complete circuit. 

Suppose that the coordinate systems used to 
describe zi and zf are selected in such a way that 
21 = zf = 0 for a particular reference orbit. This 
is always possible if the two coordinate systems are 
independent but requires that the reference orbit be 
closed if the coordinate systems coincide as would be 
the case for the transfer map describing one complete 
circuit in a circular machine. This later possibility 
offers no particular restriction, however, because it 
can be shown that circular machines possess a closed 
orbit under very general conditions. 

Now consider orbits near the reference orbit, 
For these orbits, z1 and zf will be small, and the 
connection (1) will have a Taylor expansion of the form 

zf = xRabzjj + I:TabcZ&Z; + . . . (2) 

Here R will be recognized as the transfer matrix of 
the usual linear theory and T is the second-order 
transfer matrix as computed, for example, in the 
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widely used program TRANSPORT. 1 In addition, as 
indicated, there are generally also third and higher 
order terms in the expansion. 

Because a transfer map arises from tracing orbits 
whose equations of motion- are derived from a Hamil- 
tonian, it must satisfy certain general conditions. 
Define a matrix L called the linear part of M by the 
equation. 

Lab@) = ;?Z~/az&. (3) 

Then a necessary and sufficient condition that M be 
the result of a Hamiltonian flow is that the matrix L 
be symplectic .2 That is, L must satisfy the equation 

-irJL = J (4) 

where, in a suitable coordinate system, J is the 
matrix having the block form 

J = . (5) 

For this reason, a transfer map is technically 
referred to as a symplectic 9. 

Note that L in general depends on 
(4) must be sati sfied identically for 

z1 and that 
every zi. It 

follows that the coef ficie nts R, T, etc. 
the expansion (2) are not all independen 

ppe aring 
Cons e- t. 

quently , a Taylor series expansion is not 
way of parameterizing a symplectic map. 

This paper shows that symplectic maps are more 
conveniently expressed usi ng the recently developed 
tools of Lie operators Lie transformations, and the 
factorizazn theorem. i These tools also provide a 
procedure for systematically computing the net trans- 
fer map produced by a sequence of linear and nonlinear 
elements. Finally, they provide a procedure for the 
multiple iteration of a transfer map, and therefore 
make it possible to compute the effect of many turns 
in a synchrotron or storage ring. 

in 

convenient 

General Theory 

To introduce the notion of a Lie operator, let 
f (z> be any function of the phase-space variables z. 
With each such function there is an associated Lie 

F. operator This operator acts on fmanxs 
defined by the rule. 

Fg = [fd - (6) 

Here g is any function of the phase-space variables, 
and the square bracket [I, ] denotes the Poisson bracket 
operation familiar from classical mechanics. 

Next, consider the object exp(F), called a Lie 
transformation, defined by the exponential series 

exp (F) = I + F t F2/2! t F3/3! t ., . (7) 

More explicitly, the action of exp(F) on an arbitrary 
function g is given by the expression 

exp(F)g = g + [f,g] +[f, [f,gl l/2! + *a* (8) 
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Combining the perfect ring and the short sextupole, 
the net transfer map for the entire ring is given by 
the expression 

M = exp(F2) exp(F3) . (13) 

of a si ngl e coordinate and momentum 
linear combi nation of the monomials 

The factored product representation has several 
important features. First, the various polynomials 
have a direct physical interpretation. For example, 
f2J or equivalently exp(F2), produces the linear 
transfer matrix part of (2). Similarly, f3 arises 
from cubic terms in the equations of motion such as 
those describing the effect of sextupoles, etc. 
Second, the factored product can be truncated at any 
stage and the resulting map will still satisfy the 
symplectic conditions (3) through (5) exactly. This 
observation is important because it justifies a par- 
ticle tracking technique commonly used to yimulate the 
effect of many turns in circular machines. In this 
technique, nonlinear terms in the Hamiltonian are 
simulated by delta function impulses that change 
transverse momenta but leave coordinates unaffected. 
It can be shown that this technique does indeed 
produce a symplectic transfer map and that the map 
thus obtained has a factored product representation 
whose factors converge rapidly to the true factors of 
the transfer map for the actual machine as the number 
of delta function terms is increased. Third, any set 
of homogeneous polynomials f, when employed in (9) 
will produce a symplectic map. This makes it easy to 
count the number of independent parameters required 
for a given order of approximation. For example, if 
TRANSPORT were extended to cover problems through 
third order at fixed total momentum, then a total of 
65 independent parameters would be required to handle 
the completely general case. (For four variables, 
there are 10 monomials of degree two, 20 of degree 
three, and 35 of degree four ,) If chromatic effects 
through third order were also included, which in the 
static case requires five variables, then at most 120 
parameters would be required. Indeed, the use of 
transfer map methods may be the easiest way to extend 
TRANSPORT to higher orders. 

A Simple Example 

A simple example will illustrate the procedure for 
combining and iterating transfer maps. Consider one- 
dimensional motion in a weak focusing machine con- 
sisting of a perfect ring with one short sextupole 
insertion. Then the transfer map for going around the 
ring up to the sextupole is given by exp(F2) and the 
transfer map for the sextupole element is given by 
exp(F3). In this simple case f2 and f3 are the 
homogeneous polynomials 

f2 = - w(p2 + q2)/2 (10) 

f3 = sq3/3 . (11) 

Here w/(2n) is the tune of the ring and s measures the 
path integrated sextupole strength. To verify, for 
example, that exp(F3) really does describe the effect 
of a short sextupole, it is easily computed using (8) 
that 

exp(F3)q = q 

exp(F3)p = p + sq2 . 

(12a) 

(12b) 

Again using (8) and employing the notation of (1)) 
one finds from (13) that the net transformation in 
going once around the ring is given by the expressions 

qf = qi cos w + pi sin w (14a) 

pf = -qi sin w + pi ~0s w t s(qf)2, (14b) 

has studied a map MH in an astronomical context that 
proves to have the factorization exp(F3) exp(F2). 
(Note that the order in which Lie operators and Lie 
transformations are written is important because Lie 
operators do not in general commute!) Routine compu- 
tation shows that both these maps are related to M and 
to each other by simple nonlinear “similarity” trans- 
formations, 

MC = exp(F3/2) M exp(-F3/2) (15) 

MH = exp(F3) M exp(-F3) . (16) 

Thus, problems that initially appear to be very 
different are in fact essentially the same. The rela- 
tive ease with which such unsuspected relationships 
can be discovered and stated is an illustration of the 
power of the method of transfer maps. 

Suppose one now wants to compute the effect of 
going around the ring many times. This is equivalent 
to computing M” for large n. The computation of 
M” would be easy if a Lie operator H could be found 
such that M could be re-expressed in the form exp(H), 
for then M” would be simply given by exp(nH). The 
determination of such an H is a standard problem in 
the theory of Lie algebras that is solved by using the 
Campbell-Baker-Hausdorff formula.2 This formula 
gives H in terms of F2, F3, etc., and their multiple 
commutators. In addition, there is an analogous for- 
mula that gives the function h associated with H in 
terms of f2, f3, etc., and their multiple Poisson 
brackets. Finally, it can be shown that the computa- 
tion of exp(nH) is equivalent to the integration of a 
“trajectory” in “2 space” for n units of “time” using 
-h as an “effective” Hamiltonian. 

the 
For the example under consideration, h is given by 
formal operator f ormul a, 

h = f2 + F - exp(-F2) 1 -If t 
3 . . . (17) 

and more explicitly by the expansion 

-h = r2/2 + (sr3/8) [(cos 3$)/sin (3w/2) 

+ (CO9 + )/sin (w/2) ] t O(S2r4) . (18) 

Here r,JI are certain polar variables in the q,p plane. 

As is well known, a machine consisting of a per- 
fect ring and a sextupole exhibits nonlinear structure 
resonances whenever the tune has one-third integer 



value8. The Campbell-Baker-Hausdorff formula acknow- 4. E. A. Crosbie, T. K. Khoe. and R. J. Lari, IEEE 
Transactions on Nuclear Science, Vol. NS-18, 
p. 1077, (1971). 

ledges this fact- by diverging at these tune values. 
Note that the term sin (3w/2) appearing in (18) 
vanishes at these values. However, the map M3 can 
still be written in simple exponential form at and 
near resonance values and has a well-behaved Campbell- 
Baker-Hausdorff formula. Therefore, resonance 
behavior can be easily explored. Writing M3 as 
exp(3H ), one finds, for example, near the resonance 
w = 2x 3 7 that 

h, = (w - 2n/3)h + O(s2r4) , (19) 

A Numerical Comparison 

5. M. Henon, Quarterlv of Applied Mathematics 2, 291 

The points in the figures below show the result of 
iterating the transfer map M numerous times for var- 
ious initial conditions and tunes. For comparison, 
the circle8 show the result of integrating “trajec- 
tories” using the appropriate effective Hamiltonian. 
Iterates of M are compared with “trajectories” derived 
from h in the non-resonant case and iterates of M3 
are compared with “trajectories” derived from h, in 
the near resonant case, The agreement between exact 
results and those given by the effective Hamiltonians 
is good. If agreement were perfect, the circles would 
be centered on the dots. Agreement could be improved 
further by carrying out the Campbell-Baker-Hausdorff 
formula to higher order in s, In both figures, q and p 
range from -1 to 1. 

In Fig. 1 the tune is away from resonance, the 
sextupole produces only an “egg shaped” distortion, 
and its effect appears to be perfectly described by 
h. Since the trajectories generated by h are closed, 
all initial conditions within the square give stable 
orbits. 

In Fig. 2 the tune is near a third integer. In 
this case there is some loss in “phase accuracy”, 
1 .e., the circles are no longer centered on the points 
after a large number of turns. However, the agreement 
in “shape” is still good. Observe that trajectories 
corrresponding to large betatron amplitudes go off to 
infinity. Consequently, h, correctly predicts that 
motion near resonance becomes unstable if the betatron 
amplitude is too large. 

Examination of the figures shows that the effec- 
tive Hamiltonians reproduce the general overall fea- 
tures of the transfer map at all tune values. Conse- 
quently, the effective Hamiltonians generalize the 
Courant-Snyder invariants, and moreover can be used to 
determine regions of stability and instability, the 
dependence of tune on betatron amplitude, beating 
ranges, resonance width8, and rates of emittance 
growth. 

Conclusions 

The method of transfer maps reproduces in an effi- 
cient and unified manner all results that have been 
previously obtained from current beam transport and 
Hamiltonian perturbation theories, It appears to 
offer the promise of going beyond these theories in 
some areas where the current theories become too com- 
plicated for easy application. 
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Fig. 1. Typical behavior when the tune is far from 
resonance. Orbits are stable, and iterates of M 
appear to agree perfectly with trajectories derived 
from h. 
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Fig. 2. Behavior near a third integer resonance. 
Motion is unstable for large betatron amplitudes. All 
of phase space becomes unstable exactly at resonance. 
Evidently the location of the stahle region and the 
growth in the unstable region are well described by 
h r* 
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