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Abstract 

The use of the achromat concept (1) to facili- 
tate chromatic corrections in large storage rings is 
illustrated. The example given in this report is a 
lattice for a 75 GeV/c ring with six interaction 
regions having a betax = 1.6 m, a betay = 0,lm and a 

luminosity of 1.4 1032cm 
-2 -1 s , The chromatic 

corrections are done with four families of sextupoles, 
two for each transverse plane, the strengths of which 
are determined by the solution of four linear equa- 
tions in four unknowns. The basic simplicity of the 
method allows on-line control of the sextupole 
adjustments . 

Introduction -- 

Sextupoles used in the lattice structure of 
storage rings for the purpose of making chromatic 
corrections may introduce geometric aberrations that 
distort the particle motion. The magnitude of these 
aberrations increases as the beta functions at the 
interaction points decrease. These distortions may 
be further compounded by geometric aberrations intro- 
duced by the bending magnets. Fortunately both of 
these degrading effects can be minimized in the 
following way : 1) The design of the first-order 
lattice containing the dipole and quadrupole compon- 
ents is chosen so as to minimize the magnitude of the 
inherent geometric aberrations. 2) The chromatic 
correcting elements (sextupoles) are introduced in 
patterns which do not deteriorate the geometric 
quality of the already chosen first-order lattice. 
It is the purpose of this paper to illustrate how 
this can be achieved by using some of the essential 
features of the second-order achromat concept (1) . 

Basic Lattice Design 

The basic lattice is divided into three main 
segments : the interaction regions, a straight 
matching section containing only quadrupoles, and 
curved sections where the chromatic corrections are 
made. The curved sections are composed of modules, 
each of which has a total transfer matrix equal to 
the identity matrix in both transverse planes. Each 
module consists of six identical unit cells con- 
taining dipole and quadrupole components, Such a 
system is achromatic to first order and has vanishing 
second-order geometric aberrations, This requires the 
correcting section to be set at a fixed tune. However, 
in the example given, sufficient tuning of the ring 
can be achieved in the matching straight sections. 

The correcting sextupoles are then introduced in 
pairs, the elements of each pair being identical and 
separated by a phase shift of pi in both transverse 
planes. Two such pairs are introduced in each 
transverse plane, with no interlacing of adjacent 
pairs, as shown in figure 1 below. If the intervening 
lattice between elements of each pair is linear, then 
the sextupoles do not introduce geometric aberrations 
at the interaction points for the on-momentum 
particles. The lattice is, of course, not perfectly 
linear because of the presence of dipoles and because 
of the finite length of the sextupoles. Also the 
cancellation of the off-momentum geometric aberrations 
is not exact because the phase shift between 
correcting sextupoles is a function of momentum. We 
find, however, that these higher-order residual 
effects are small in the example given below. 

A Lattice for a 75 GeV/c Eletron Positron Ring 

Figure 1 describes the lattice chosen, as a 
representative example for a 75 GeV/c ring for the 
specific purpose of illustrating the chromatic 
correction process. Table 1 contains the main 
parameters characterizing the ring. Four chromatic 
properties of the ring are corrected: dnuxfddelta, 
dnuylddelta, dbetaxfddelta and dbetayfddelta. A 
second order matrix formalism, used in the program 
TRANSPORT (2), is implemented in the program DIMAT 
(3) which is designed for circular machine studies. 
The computation of the sextupole strengths involves 
the determination of the transfer matrix for one 
superperiod and the solution of a set of four linear 
equations with four unknowns, 
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Fig.1. Ring layout 

Table 1 

Machine Parameters 

II of interaction points 6 
Radius of curvature 2.5 km 
Circumference 26.0 km 
Available space at interaction points +/- 5.0 m 
Interaction point values betax 1.6 m 

betay 0.1 m 
etax 0.0 m 

Tunes nux 70.25 
w 67.75 

Chromaticities chix -119.4 
ch iy -156.5 

Beam sizes at interaction point sigmax 0.460 mm 
SigmaY 0.081 mm 
sigmaE 0.128 percent 

luminosity 1. 41032cm-2-s-1 
betax max 600 m 
betay max 474 m 
Cell values beta max 123.5 m 

beta min 41.6 m 
etax max 3.1 m 

phix 60 degrees 
WY 60 degrees 

Figure 2 shows the momentum dependence of the 
tunes nux, nuy, and the beta functions betax and betay 
at the interaction point, for one superperiod. 
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Fig.2.Tunes, betas vs. momentum for ideal setup 
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Fig.3. Stability diagram - ideal case 
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Fig.4. Tracking of 100xy,7uxy on momentum particles Fig.5 Tracking of 10Uxy, 7uxy on momentum particles 

Av /lx,~o~~y Particles were traced around the lattice to 
determine the zone of stability at the interaction 
point. Figure 3 shows the result of this tracing 
(100 turns of a full lattice) of particles for rela- 
tive momenta deviations of 0.6, 0.8, 1.0, and 1.2 
percent dp/p. Figures 4 and 5 depict the phase space 
motion in both transverse planes for the on-momentum 
particles. As can be seen from these graphs, the 
motion is close to linear. The curves are elliptical 
which illustrates that the geometric aberrations in 
the system are small. 

Sensitivity Analysis 
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The above analysis is based on the realization of 
a perfect unity transfer matrix for each of the 
correcting sections, and on the absence of interlacing 
of the sextupole pairs. Using the program DIMAT we 
estimate how exactly these assumptions have been met. 
Figure 6 gives the same results as those given in 
figure 2 but for a lattice where the curved sections 
have a phase advance of 59 degrees per cell. 
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There is a significant change in the tunes and 
especially in the beta functions as a function of 
momen turn. (The overall tune for the on-momentum 
particles was held constant.) The zone of stability 
is reduced for the 59 degree/cell case. This is 
evident in figure 7. However the deterioration of 
the momentum dependence of the tunes and beta func- 
tions is more severe than it is for the stability 
diagrams. 
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Fig.7. Stability diagram - 59OcelIs 

Figures 8 and 9 give the same results for a 
machine having interlacing of two pairs of correcting 
elements. (one horizontal pair and one vertical pair 
are interlaced.) From these figures it can be seen 
that interlacing of the correcting sextupoles is very 
detrimental to the stability diagrams. 
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Fig.g. Stability diagram - interlacing 

Conclusions and Suggestions 

We feel that the above results are sufficiently 
encouraging to warrant further studies. Analysis of 
possible ways of reducing the higher order momentum 
dependence of the tunes and of the beta functions by 
the choice of the first-order lattice design seems in 
order. We also wish to emphasize that the above 
lattice is only an example to illustrate the chromatic 
correction technique used here. The value of the 
method now needs to be explored for other possible 
machine parameters to determine the limits of 
applicability of this technique. 

Acknowledgements 

The authors wish to thank their colleagues at PEP 
and elsewhere who have given their support and sugges- 
tions during the evolution of this study. 

1. 

2, 

3. 

4, 

* 

t 

References 

K.L. Brown, A second-order magnetic-optical 
achromat, this conference and SLAC PUB 2257. 

K.L. Brown, D.C. Carey, Ch. Iselin and F.Rothacker, 
TRANSPORT a computer program for designing charged 
particle beam transport systems, SLAC 91 (1973 
rev.), NAL 91, and CERN 73-16. 

R.V. Servranckx, DIMAT a computer program for 
circular machine lattice design, Internal report 
Saskatoon. 

R.V. Servranckx, DEPART - A differential equation 
particle tracing program - Particle Accelerators, 
6, 83-93 (1975). 

Work supported by the Department of Energy under 
contract number EY-76-C-03-0515, Also supported 
by the Natural Sciences and Engineering Research 
Council of Canada. 

Stanford Linear Accelerator Center, Stanford 
University, Stanford, California 94305. 

3600 


