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P. Faugeras, A. Faugier , J. Gareyte, A. Hilaire* 

Chromaticity correction is essential in the 
SPS accelerator both for normal operation and for 
high density single bunch acceleration and storage, 
required for the CERN proton-antiproton collider 
project. Linear correction is presently achieved 
with one set of 36 F sextupoles and another set of 
36 D sextupoles, regularly placed around the machine 
circumference. This lumped sextupole distribution 
induces non-linear variations of the machine tune 
with Aplp. These higher order effects which are 
also encountered in large electron machines cannot 
actually be corrected in the SF’S, where they are 
well observable at least up to second order. Analytic 
calculation of the non-linear chromaticity, using 
Fourier expansions of the lattice functions, as well 
as computer sirmlation with the AGS program closely 
agree with the measurements performed at various 
energies. For the same reason, the transition energy 
depends upon the Irr>mentum deviation Ap/p of the beam, 
which can lead to losses when beams with large Ap/p 
are accelerated through transition, since IX) correct 
phase-jump timing can lze found for all particles. 
Measurements of this effect in the presence of differ- 
ent chranatic corrections are presented and also 
compared with the predictions of the analytic calcul- 
ations and of the computer evaluations with the AGS 
program. 

Introduction 

Some protons are always lost during the early part 
of the SPS acceleration cycle, i.e. from injection up 
to after transition. Part of these losses can be 
attributed to injection errors and to particles which 
are not trapped by the accelerating system, but the 
remaining losses are very sensitive to the fine adjust- 
ment of the machine sextupoles used for chromaticity 
correction. In this paper, we will show how the sextu- 
pole distribution is responsible for the non-linear 
chromaticities observed in the SPS. The formalism 
developed will also be used to estimate the momentum 
dependence of the transition timing which is respons- 
ible for a few percent beam loss around transition. 

Non-linear chrcmaticities 

Chranaticity measurements 

The variations of the betatron tunes with the 
beam munentum deviation were carefully measured at 
various energies [I], by displacing the team radially 
with the RF control system. Fig. 1 shows tvpical 
results obtained on the 10 GeV injection platform and 
on the 200 GeV intermediate flat top. Although there 
is a residual chromaticity for Ap/p = 0, due to an 
imperfect compensation , one clearly sees here the non- 
linear behaviour of the horizontal tune with momentum. 
This effect is more important at low energy, where the 
correction given by the machine sextupoles is relativ- 
ely higher : because of remanent field and eddy current 
effects, the SFS chromaticities vary with the main 
field B, [2] , according to : 
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which was checked experimentally, [l], [3]. 
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1 Fig. SFS tunes versus momentum deviation 
(Ap/p = .54 AR nan) 

Analytic calculation of the chrunaticity 

The non-linear part of the chromaticity can 
be calculated by developing the Courant and Snyder 
equation to the desired order in momentum deviation 
6 = Ap/p, [S], 161. Up to the second order, the per- 
turbed tune v is given by : 

a2 
Y2 = v2 t as t ~ +E; 62 n 

(2) 
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The an are the coefficients of the Fourier expansion 
of the lattice function a( +), with respect to the 
normalized tetatron phase angle + : 

a($) = vi 6: (Sa - K) = LI + 1 ane in+ (3) 
PO nfo 

where we have used the standard notations : 
B’ 

K=jp + d$ =$+- (4) 
0 0 

When the sextupoles, which give a chromatic correction 
AS, are adjusted to compensate the natural-chrunaticity 
then a = 0, and the second quadratic term b in (2) is 
given by, [l] : 

t; = - 2 $A( t v; 1 (f305/2S)-n F; (5) 
II 

where the index n means the nth harmnic coefficient of 
the corresponding function, the subscript 0 refers to 
unperturbed quantities, and : 

F1 = 0 3/2 (Ku s 2 
- z ape) (6) 

0 PO 

Using the lattice functions calculated with the AGS 
computer program, [4], one can perform the Fourier 
analysis of the above functions and then clearly see 
the influence of each spatial harmonic of the sextupole 
distribution. Fig. 2 shows for2instance the relative 
strength of the terms \ak/n2-4v,j of equation (2): 
the 54th harmonic is important as it is very ClOSe 
to 2vo= 53.2, but harmonics 36 and 72, which are 

0018-9499/79/0600-3577$00.75 0 1979 IEEE 3577 

© 1979 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.



further away fran the resonance, still contribute a lot 
because of their greater intrinsic sfrength. Similarly 
the most important contribution to b (eq. 5) comes from 
the 36th harmonic. This b term can only be reduced by 
increasing the number of sextupoles - the actual number 
of 36 F and 36 D sextupoles is too near to the v,value- 
whereas the sum term in (2) can be minimized by reduc- 
ing the strength of harmonic 54 - see below - or by 
changing the machine tune. 
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2 Fig. Spatial harmonics of the sextupole 
distribution. 

The same exercise has been performed for the 
vertical tune : according to the measurements, this 
ef feet is much less pronounced in the vertical plane, 
because the 54th harmonic of the D sextupoles distribu- 
tion is much smaller than in the horizontal case, and 
the sorresponding sum term in (2) is small and negative. 
The b term is also small, as the D sextupoles have 
little influence on the dispersion function . 

Simulation with the AGS program 

The AGS computer program, [41, allows the calcula- 
tion of the betatron functions and tunes for off- 
momentum particles. When using the SFS lattice, with 
the two sextupole families adjusted so as to compensate 
the natural chromaticity, one obtains the curve A of 
Fig. 3, which is comparable with the 200 GeV measure- 
ments. This calculated curvature can be split into 
three parts : 

II 16 8 8 ‘IT 8 ‘- I”, j I t ’ 9 ” I I 

tune 

mmwntum deviation ‘L. 
-10 -5 0 5 40 

I,,,,l,,Ih I,.,II,IIII 

Fig. 3 AGS simulation of SKY chromaticity. 

- Thanks to their regular distribution, the 
F sextupoles can be divided into two independent 
interlaced families, which allows to cancel harmonic 
54, while keeping a proper compensation of the machine 
chromaticity. In this way, AGS gives the curve B of 
Fig. 3 which exhibits sarewhat less curvature than A. 

- The effect of the other harmonics can be estima- 
ted by calculating for a given Ap/p the changes in the 
lattice functions BHand aP , induced by the presence of 
the sex tupoles . Curve C of Fig. 3 is obtained by sub- 
stracting this contribution from curve B. 

- The residual small curvature of C is intrinsic 
to the bare machine : AGS shows that even without 
sextupoles, the machine tunes do not vary linearly 
with Ap/p. 
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Fig. 4 Non-linear chromaticity at 10 GaV. 

In order to see if A(S simulation fit the expari- 
mental data, one has to take into account the variation 
of the uncorrected chromaticities with energy as given 
by (1). This was done by putting in the AGS input data 
suitable sextupolar components in the field of the main 
bending magnets and then adjusting the machine sextu- 
poles for mpensation of the effective chromaticities 
at each energy. Excellent agreement was obtained this 
way and Fig. 4 shows an example for 10 CeV. Note that 
for Ap4 > 9 yoo , one is close to 3v, = 80 and 
measurements are doubtful, as part of the beam is lost. 
The tune variation deduced frun the analytic calcula- 
tions is also in very good agreement with the experi- 
ments, but departs slightly from ASS simulation for 
large positive Ap/p, because of the limitation of 
equation (2) to the second order. 

Momentum dependence of the transition timing 

This effect, known as the “Johnsen effect”, (71, 
is supposed to be at the origin of scme losses just 
after transition when beams with large momentum spread 
are accelerated in the SPS, [8] . Let us write the var i- 
ation AL of the orbit length L up to the second order 
in the mnentum deviation 6 = Ap/p : 

AL = a16(1t ~12~6) with al = 
1 

T- , c- 
(7) 

0 

where Ytr is the transition energy of the reference 
particle ( 6 = 0). It can be shown, (91, that the 
spread in transition timing arising from the momentum 
spread in the beam is given by : 

Ytr, 
At = q(1.5 t a2)6 e T (8) 

Y 
So particles pass transition at the same time only 
if a2 = -1.5. 
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Evaluation of a2 Comparison with measurements 

a2 can be deduced from the observed linear vari- 
ation of the transition timing versus the beam mean 
radial position, for a given machine chromaticity, 
and the results are plotted in Fig. 5 as a function 
of the effective SPS chromaticity, The fact that the 
zero harmonic approximation of (13) fits better the 
experimental data than the complete evaluation of (13) 
with a full Fourier analysis of the relevant functions, 
is not very significant owing to the accuracy of the 
measurements. 

A particle with a momentum error 6 has an orbit 
deviation x - a# P apo6 t a 62... . !I’he perturbed 
dispersion function ap can b$ calculated up to second 
order in 6, [l] , which results in : 

Fnl ,in$ 

OP1= -aPo 
t v’o 5 1 -.- 

n v2 - n2 
(10) 

where F’ is defined by (6). The change in orbit length, 
up to second order in 6, is now obtained by calculating 
the elementary trajectory length and integrating it 
over the circumference. 

i,[+t$) ds (11) 

0 

In fact, (11) contains other quadratic terms, coming 
fran orbit changes in the magnetic lenses, but these 
terms can completely be rqlected for the SPS. After 
integration with the help of (9) and (lo), (11) can 
be identified with (7), leading to : 

(12) 

a2 = --It&;($) F&&d;;d5 (I31 

0 -n 

The last term in (13) can be evaluated using the AGS 
output for a ‘p(s) and amounts to ,826 for the SPS. 
A first evaluation of az is obtained by keeping only 
the zero harmonic component of the sum term in (13), 
which with some approximation boils down to -2&,tA ~~5, 
being the natural chromaticity of the machine and A5 
the chranatic correction given by the sextupoles. 
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Fig. 5 Variation of a2 with horizontal chromaticity, 

Fig. 5 also shows the a2 variation deduced from 
AGS outputs. The discrepancy with (13) comes from the 
approximation used in AGS to calculate the transition 
energy for an off -mcanentum particle, [41 . Anyway the 
suppression of the spread in transition timing would 
require an effective chranaticity of the order of 
r;H = 1.6 which cannot be tolerated around transition. 

Conclusion 

Second order effects in momentum deviation of 
the beam have been observed in the SPS. Both computer 
simulations with the AG program and analytic calcul- 
ations using Fourier expansions of the lattice func- 
tions agree well with the experimental data. Further- 
more this latter method allows to see how these effects 
could be minimized, should it prove to be necessary 
for the future SPS projects. - 
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