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OVERLAP KNOCK-OUT RESONANCES WITH COLLIDING BUNCHED BEAMS IN THE CERN ISR 

Stephen Myers* 

Summarv 

A bunched beam can subject a ‘perturbed beam’ to 
overlap knock-out (OKO) resonances when the frequencies 
contained within the longitudinal spectrum of the bun- 
ches are equal to any of the transverse betatron fre- 
quencies of the perturbed beam. Usually with proton 
machines this condition can only be attained when the 
revolution frequencies of the two beams are different. 
With electron machines and their associated high synch- 
rotron frequency, the betatron frequencies of the per- 
turbed beam can overlap with longitudinal sidebands re- 
lated to the synchrotron motion of the bunched beam. 
The worst case occurs when the first harmonic of the 
bunch frequency overlaps with the betatron frequencies 
of the perturbed beam. This situation was set up in 
the ISR for dipolar and quadrupolar (order 1 and 2) 
OK0 resonances by operating the rings at largely asym- 
metric energies (26 and 11 GeV) and at tune values of 
the perturbed beam close to the integer (dipolar) and 
the half integer (quadrupolar) . In this mode the 
half life of the perturbed bunched beam was reduced 
from several months to a few seconds by maximizing the 
strength of the OK0 resonances, 

1. Introduction 

The initial operation of the ISR at tune values 
close to an integer resulted in transverse blow-up and 
proton losses due to dipolar overlap knock-out reso- 
nances acting between the coasting beam and the injec- 
ted bunched beaml. These effects are eliminated by 
reduction of the harmful longitudinal harmonics con- 
tained in the bunched beam’. 

Overlap knock-out may also occur when both beams 
are bunched. In this case the synchrotron motion of 
the perturbed beam causes particles to traverse the re- 
sonance many times and increases the rate of increase 
of the transverse emittance. 

2. Elements of Theory 

The longitudinal frequencies in a bunched beam are 

fR = s fb + msfs (1) 

where s is the harmonic number of the bunch revolution 
frequency (fb), ms is the mode of the bunch oscillation 
(m, = 1 for dipole etc. ) , and f, is the coherent syn- 
chrotron frequency of the bunches. 

The transverse frequencies contained in a beam are 

ft = (p rf: mtQp)fp 

where p is an integer, mt is the mode of the transverse 
oscillation and fp is the revolution frequency of the 
perturbed particle. 

In the ISR (where f, (c fb) the resonance condi- 
tion is satisfied when 

(3) 

Fig. 1 shows certain resonance lines in a plot of 
q (the non-integral part of Q) against fb/f and as a 
function of s/mt. Each resonance line is i rawn for 
a given harmonic of the bunch frequency for the ISR 
(harmonic number = 30) up to the fifth harmonic 

Fig. 1. Resonance 
condition for over- 
lap knock-out 
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(s = 150). For 11.8 GeV/c in one ring and 26.6 in the 
other the frequency ratio is (fb/fP) 1.00255. Under 
this condition the resonance s/mt = 30 occurs at a q 
of 0.922; at this q value the dipolar ‘resonance’ 
(m, = 1) is excited by the first harmonic of the bunch 
frequency (S = 30) and the quadrupole resonance (m, =2) 
is excited by the second harmonic (s = 60) etc. In 
fact all harmonics of the bunch frequency excite a re- 
sonance at the corresponding mode number. Similarly 
at q = 0.538 a resonance occurs at s/mt = 30/2 indica- 
ting that the first harmonic of the bunch frequency can 
excite the quadrupolar resonance (mt = 2); the second 
harmonic can excite the octupolar (mt = 4) etc. The 
strength of OK0 resonances may be calculated in a simi- 
lar way to that for ‘normal’ beam-beam resonances ’ 2 3 
but by replacing the total current by the component of 
the bunched current which drives the resonance. For 
the case of OK0 resonances with bunched beams, however, 
the situation is greatly complicated by the synchro- 
tron motion of the perturbed particles and the time- 
space dependence of the beam-beam effect. In addition, 
no theoretical solution exists to evaluate the effects 
of a cluster of resonances acting on a single particle, 
It has already been seen that different harmonics of 
the bunched beam excite resonances of different order 
at the same tune value. For these reasons it is im- 
possible to calculate analytically the absolute values 
of transverse blow-up rates due to OK0 resonances. 
However it is still useful to present some of the sim- 
plified equations which are required to perform such a 
calculation. In this way the importance of certain 
parameters may be appreciated and scaling laws may be 
derived. The distance from an OK0 resonance is 

e = mQ 
tP (4) 

The bandwidth of the dipolar resonance* (mt = 1) is, 
for large crossing angle (x), 

Ae(mt = 1) = 
c&Jo (lt82) 18 

Z 

4N3*/Bp /(I~ sinx 

* CERN, Geneva, Switzerland where cs is the relative amplitude of the harmonic 
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causing the resonance; Bz, ps, uz, and z are respec- 
tively the amplitude function, the phase advance, the 
rms beam size and the beam separation in the crossing 
point. 

centre of the aperture. An injected bunched beam of 
around 150 m?+ (20 bunches) was accelerated from 11.8 to 
26.6 GeV/c in ring 2 (R2). This beam acted as the 
source of excitation of OK0 resonances for the other 
ring (Rl). The beam in Rl was displaced from the 
injection orbit (Ap/p = -0.02) across the OK0 resonance 
to the outer aperture limitation (Ap/p = tO.025). A 
linear dependence of tune (4) on Ap/p had been pre- 
viously set up. During each aperture traversal an XY 
plotter recorded signals proportional to the beam cur- 
rent and the tune value. In order that vertical exci- 
tation would be observed as current loss the vertical 
aperture was limited by a beam scraper. The rate of 

For higher order resonances3 

Ae(mt 1 2) = 
n3hJ5 ?+l f32m t! lBploz sinx 

x H z 

mt-2 453 
(3 

ew ( imtuz) 

z 

(6) acceleration of the pulse was 2.5*10-4(Ap/p per second). 

4. Discussion of Results 
where Hn is given by the recursion equation 

(i) Q values close to the integer 

In the ISR with one beam at 11.8 GeV/c and the 
other at 26.6 GeV/c (fb/fp = 1.00255) an OK0 resonance 
condition is (see Fig. 1) 

H 
ntl (‘) 

= 2x H,(X) - 2n Hnsl(x) 

with Ho(x) = 1 and Hl (x) = 2x. 

QP 
= 8.922 for -?- = 30 

mt 
Fig. 2 shows the calculated bandwidth per inter- 

section as a function of beam separation for the expe- 
rimental conditions described later. 

When the beams are sufficiently separated the 
strength per intersection of all beam-beam resonances 
except the dipolar converge to zero (see Fig. 2) . The 
measurements (Fig. 3) show that large separations can 
cause a very large excitation (a) or no excitation (c) 

Fig. 2. Resonance 
bandwidth as a fun- 
ction of beam sepa- 
ration for Q = 8.922 
and measured values 
of c 
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The transverse increase in the amplitude of a par- 
ticle which crosses a single isolated mono-dimensional 
resonance of order m, is given by2 

Fiq. 3. Losses due to dipolar OK0 resnnanccs 

depending on the type of separation in each intersec- 
tion. The large excitation occurs when the vector 
addition of the bandwidths (with !.I,) over one turn is 
large (Fig. 4(a)). Conversely when the kicks are sub- 
tractive (Fig. 4(b)) the excitation can be greatly re- 
duced. 

where ay = the initial rms value and de/dt may be 
calculated from (4). (b) 

For the bunched beam, only the rate of change of 
momentum of the centre of gravity of the beam (or the 
synchronous particle) need be calculated. However in 
the case of the perturbed beam the instantaneous dP/dt 
of each particle inside the bucket must be evaluated. 
In this way the transverse blow-up of a particle &hich 
crosses a single isolated mono-dimensional resonance 
of bandwidth Ae (from (5) and (6)) may then be evalua- 
ted from (7). In the case of many crossing points 
the resonance bandwidth must be evaluated from the 
vector addition of Ae over one turn. This ca,n be 
evaluated when the relative phase advance Aus in each 
crossing point is known. 
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type i? ncparatmr 3. Measurements and Results 

(a) 
Both ringsofthe ISR were initially set for injec- 

tion at 11.8 GeV/c. The tune values were adjusted so 
that the expected resonant tune value Q, was around the 

Fig. 4. Vector addition for various types of beam se- 
parations and Q = 8.922 
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Fig. 3(b) also shows that the sum of the excita- 
tion is very small when the beams are colliding head- 
on. In this configuration the calculated beam-beam 
excitation per intersection is maximum for all even or- 
der resonances. Again the absence (or reduction) of 
excitation may be explained by the vector summation of 
Ae in each crossing point (Fig. 4 (c) 1 . Fig. 5 shows 
that, as expected, when the bunched beam is dumped the 
excitation disappears. 
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Fig. 5 

(ii) Q values close to the half integer 

In this case the resonance condition of interest 
is 

QP = 8.538 ; .2- zz $ 
mt 

From Fig. 2 a very small quadrupolar excitation per 
intersection is expected when the beams have large 
separations. Fig. 6(b) confirms this expectation. 
However, once again the expected large excitation per 
intersection at zero separation produces a very small 
total excitation (Fig. 6 (a) ) . 
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Fig. 8 

The variation of the total OK0 excitation as a fun- 
ction of the RF voltage (of the perturbed bunches) is 
shown in Fig. 9. It is clear that increasing the RF 
voltage and hence the synchrotron frequency causes the 
beam blow-up rate to increase. This may be explained 
qualitatively by the fact that each particle crosses 
the resonance a greater number of times as it is acce- 
lerated across the resonance. 

Ip 1 (A) 

Fig. 6 
Fig. 9 

This is again explained by the vector summation of the 
resonance bandwidth over the total number of crossing 
points (Fig. 7). In the case of quadrupolar beam- 
beam resonances the sign of excitation is independent 
of beam separation which makes it impossible to devise 
beam separations which maximize the excitation as was 
done for the dipolar case. However by decreasing the 
amplitude of the vectors in some crossing regions the 
total excitation can be greatly increased (Fig. 7). 
Application of this type of ‘bump’ caused an immense in- 
crease in the beam losses during traversal of t)le reso- 
nance (Fig. 6(c)). The large Q range over which the 
beam loss occurs is due to quadrupolar OK0 resonances 
at other Q values being excited by other harmonics of 
the revolution frequency (e.g. s = 28, 29, 31, 32). 
These harmonics exist in the ISR since only 20 of the 
30 RF buckets contain bunches. Fig. 8 shows that when 
the exciting beam is debunched the excitation of the 
perturbed beam disappears as expected. 
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5. Conclusions 

For machines operating with bunched beams, overlap 
knock-out resonances of low order may occur at tune va- 
lues far removed from the tune values of classical re- 
sonances. These latent resonances may provide a 
strong source of transverse beam excitation and blow-up. 
In a multi-intersection colliding beam machine the beam 
separation in each intersection, the betatron phase 
advance between intersections, and the number of bunches 
in the exciting beam all play an important role in the 
total excitation of the perturbed particles. 
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