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ANALYSIS OF TRANSVERSE COHERENT INSTABILITY IN KEK BOOSTER 
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Coherent transverse instability observed in KEK 
booster was analyzed with a free string model, taking 
into account of the chromaticity of the bunched beam. 
The build-up time of the instability is represented by 
an eigen value of a matrix equation. The results of 
the calculation explain quite well experimental obser- 
vations. The instability is induced by the int raction 
of the beam with ferrite loaded kicker magnet. J The 
interaction is represented experimentally and theoreti- 
cally with a mutual inductance. Using an equivalent 
circuit of the magnet, the induced field and the build- 
up time of the instability were calculated. So far 
many theoretical studies have been made but satisfac- 
tory agreement is not yet obtained partly because of 
the difficulty of a c 
of the interaction?w6 3 

rrect estimation of the source 
The analysis of the kicker 

magnet is rather easy when the current terminator is 
removed. This leads to a thorough description of 
the instabili y and gives a good agreement with the 
observations? 5 

Equivalent circuit of kicker magnet __ 

The kicker magnet for the fast beam extraction is 
composed of the lamination of ferrite cores and 
electric plates and the one-turn coil is terminated 
with a matched resistance. The instability becomes 
more rapid when the terminator is removed. The 
following description is made on the condition of the 
magnet without the terminator. The high frequency 
response of the magnet is represented with anLC dis- 
tributed circuit. In regard to the primary current 
passing through the gap of the magnet, the induced 
current in the circuit is given by mutual inductance 

M = (a -’ bAx) , (1) 

where a = 1.01 x 10 -‘, b = 1.60 x 10 -12 in unit of 
MKS, Ax is the current position in the gap and M is 
per unit core. This is because that the magnetic flux 
produced by the primary current is enclosed by the one- 
turn coil through the capacitance. 

Induced current by AC current 

The relation between the primary current il and 
induced current is represented with the equivalent 
circuit in Fig.1, For the n-th mesh, following 
relation holds 

02(1,-l t In+l - 21,) - si - i: = -yi1 n n (2) 
1 

where 0 = l/a, ti = R/L, y = M/L and il = i eJot . 
With a smooth approximation I = I(na> = I(z P and a 
Fourier expansion, (2) can benwritten as 

urn(t) t Gim(t) + ilfYm(t) = (-)fm(t) ) (3) 

where 

I(z,t) = El YmWs in( T) 
B 

As for the induced current in the n-th mesh, the same 9 relation with (2) holds exsept for the substitution of 
the right hand side with -$I1/L. Expanding D(t-nT-‘Ck) 

4ioyw2 f,(t) = - e jut for m 
m = 1,3,5 *** 

(4) 

0 otherwise 

? 

and the boundary condition IO = I 
El 

= 0 was used. The 
R is theresonance frequency of t e magnet. The solu- 
t!!on of (3) for odd m is 

y (t) = A ej (Wt + ‘m) 
m m (5) , 

where 

4ioY 

Am = 7 
i? 

(u2-fg2 t (ws>2 
/ 

w6 cl m = arc tan (~jz-m-) . 

(6) 

The solution for even m damps with time. The A 
becomes large around the resonance and then u 
as shown in Fig. 2. m t - s 

Interaction between bunched beam and kicker-et - 

The horizontal position of the R-th particle 
which makes betatron and synchrotron oscillation is 
given by 

Ax = z ej (y$ + WSTa) 
R R 

, (7) 

where o 
B 

is the betatron oscillation frequency, 

W( = 5 
6 @ 

w and ‘R is the time of arrival at the kicker 

magnet relative to the synchrpnous particle, The 5 is 
the chromaticity and n = OL - 7 where ~1 is the momentum 
compaction factor and y is th2! relativistic energy. 
Since (7) is independent of the momentum deviation, we 
regard that all the particles arriving at TL have the 
same phase, and they are treated as a section of a 
free 6tring. 

Circulating current of the R-th section is given 

$R = (a - bAxR)iR , (9) 
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in Fourier series, we get a solution I(z,t) similar to 
(5). 

The equation of the motion of the s-th section 
which is forced by the induced field is 

.* 
xs + w*x 

BS =$gl f < I(z,t) > D(t-nT-Ts) , (lo) 

where e is the electric charge, v the velocity of 
the beam, ~0 the magnetic susceptibility of vacuum, may 
the ma&s of proton and h the gap of the magnet. 
cI(z,t)> is the average in the magnet. Inserting 
I(z,t) and D(t-nT-T ) previously obtained or defined, 
we get after some approximations 

is = j i i f HtiZkpkATRe j (kwo-wE;) (y~$ 
(11) 

J 

where 

w= (Ll$ - 6-P’ f (w,s)* 

Tnk = arc tan ( yc;& ’ 
% I’ -w ’ 

(12) 

‘k =kuo+w 
8 * 

The fig is the length of the magnet, and the relation 
VAT = 9, was used. 

S B 

Since Zs is periodic with the period T, we 
expand it as 

Zs = nIo {ansin(nwo?s) t bncos(nWoTs) 1 , (13) 

where wg is the revolution frequency. Substitution of 
this into (11) leads to 

3 (-) c c c c 
Rmkp mkk Rpk p H P AT G- {a sinpwoTR + 

bpcospwoTg}e -4 (k-q)worQ (14) 
, 

where 

Gik = g((l-l-k+q)~) f g((Wk-q)n) , 

g(y) = sin(y)/y * (15) 

and q = w 
5 

Iwo. The summation over R leads to 

C = b F+ 
R P pk 

where 

F+ 71’1 
pk = -&-- {f ((p-ktq)nr) + f 

- ja F- 
ppk , 

f(x) = cosx 

(y-x’ 9 

( (p+k-q) m> 1 , 

(16) 

(17) 

p?(k-q) =: 0, Assuming a = $e Ilht 

and substituting Into (lt) we get 
and b 

AWAY = j c c c H G- (B F+ - jA F- ) 
mk P mk uk P pk ppk . 

(18) 

Similarly 

Aw*B 
lJ 

= 1 c c H G+ (B F+ - j ApFpk’ 
m k p mk uk p pk (19) I) 

The equation (18) and (19) form a matrix equation and 
Aw is the eigen value and A,,‘s and B,,‘s are the el- 
ements of the eigen vector. 

Numerical calculation and comparison 
with experiments 

The imaginary part of the eigen value gives the 
build-up time of the instability. Let AU = 01 - jB, 
then the beam is unstable for B > 0. The maximum B of 
many eigen values is shown in Fig.3, It becomeslargest 
around 17 mgec after beam injection and the build-up 

;;y;;e;i@i&=ai * ih;gc& ;y;. ar~n’:,~cypth 

vector corresponding to the maximum 8, the elements Az, 
As, B1, Bz and B3 are relatively large, so that we 
expect to see these modes in the booster beam. 

The AR signal by a position monitor is proportion- 
al to the real part of PJIAX 

R? 

ARk 0: C A,,cos (nok)sin(2npoR) cos2n(vntqrug) 
1J 

t C B 
IJ li 

cos(~oQ)cos(27irc~)cos2r(Lin+qrU~),(20) 

where ai = ‘rk/‘r , t = nT (n: integer). Figure 5 shows 
the calculated multi-traces of various single modes 
and Fig.6 the observed ones. Agreement is good. 
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and r = r/T. The ‘I is the bunch length. The F’ is 
a rapidly decreasing even function, and large &!n 
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Fig.1 Equivalent circuit of kicker magnet. 

Fig,2 Amplitude of induced current Am, 
and phase lag cxm. 
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Fig.4 Horizontal AR signal 
during the acceleration. 

Fig.5 Calculated multi-traces of AR 
for various single modes. 

Fig.3 Inverse build up time @,,,. 
Fig.4 Observed multi-traces of 

AR signal (20 us/div). 
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