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Introduction and Summary 

This distribution fits well with distributions ob- 
served in proton synchrotrons and makes several analy- 
tical calculations for bunched beams in longitudinal 
phase space possible. For any shape of the focusing 
force the line density becomes proportional to the po- 
tential well. Self-forces caused by space-charge and 
inductive wall impedances are thus proportional to the 
external force, making calculation of bucket area reduc- 
tion and bunch lengthening easy, The microwave instabi- 
lity threshold, as given by the Keil-Schnell criterion 
with local values for current and energy spread, is in- 
dependent of the azimuthal position along the bunch, 
and again analytical formulae are possible even for 
strongly non-linear focusing forces. The relative magni- 
tude of the self-force and the microwave threshold turn 
out to be closely related, as the self-force is always 
40% of the external force when the microwave threshold 
is reached. The classical longitudinal space-charge 
limit can therefore only be reached within a factor of 
0.4. Other calculations with this “natural” distribution 
include analytical formulae for the rigid dipole mode 
threshold, and creation of flat-topped bunches with re- 
duced peak line density resulting in a higher transverse 
space-charge limit. 

Synchrotron equation with an arbitrary waveshape 

The synchrotron equations 
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dt -q- = 2 b(44 - VII] 
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can be derived from the Hamiltonian 
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where W = AE/wo = (E - E > /wg ; rl = l/y:’ - l/y2 = 
= -(df/f)/(dp/p); eVo isSthe energy gain per turn of the 
synchronous particle; Es, wg, and $s are energy, revolu- 
tion frequency, and phase of the synchronous particle; 
V($) is the accelerating waveshape, which has zero mean 
and periodicity 2~; h is the harmonic number, U(4) has 
been chosen so that the Hamiltonian of the synchronous 
particle is zero. There is area conservation in the 
(W,$) phase plane. 

The local elliptic energy distribution 

The Hamiltonian being a constant of motion, a neces- 
sary and sufficient condition for a stationary (=time in- 
variant) particle distribution is that the phase-space 
density g(W,$> can be written as a function of the 
Hamiltonian. If we choose 

d*N --= id’,(+) - d”d$, g(H) = cl (5) 

where Hb is the Hamiltonian of the extreme (= boundary) 

particle, we get as function of energy, 

g(W,$) = c2 w (0) qy-----=~JqGT=-Y (6) 
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where wb($) or Eb(+) is the bunch boundary in phase 
space. For any value of 4, the density is an elliptic 
function of energy. The line density: 

A($) = $ = / g(W,$)dW = cs[U($! - u(~,)] (7) 

has the swne shape as the potentia2, Fig. 1; U($,) is 
the potential at one end of the bunch, and c2 through c3 
are constants. 

POTENTIAL 

-~~ 

Fig. 1 Bunch with elliptic energy distribution 

Space-charge and inductive wall effects _---~ -- 
At low frequencies (long bunches) the effective 

coupling impedance including space-charge forces is most- 
ly reactive’ 

ze 
- = j(w01, n - !$$-I = jwoL, , (8) 

where n = w/w0 and L, is the effective inductance. The 
space-charge force is thus equivalent to a negative, 
energy-dependent wall inductance. The induced voltage 
is therefore proportional to the derivative of the local 
current I, which for a bunch extending from $1 to $2 
with Nb particles per bunch is 

A($) = ; = Nb “($; ;$f’) 
, 

(9) 

$2 

u($1,+2) = 
i 

[W) - Wb2I-j d$ , 41 < $2 (10) 

$1 

I($) = e $ -$ = 2nhIb “($i$; iiT2) (11) 
, 
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where Ib = eNbws/2n is the mean current per bunch, The where F = 0.7 is based on the stability diagram of a 
total voltage Vt($) becomes coasting beam with the same distribution4 v6, 

V(t)) - V($) - vo 21i.h’Ib Im{Z,/n} P 
UC@1 AZ) ’ $1 < $ < $2, 

V,(b) = L 
IV($) , elsewhere (12) 

The induced voltage has thus the same .&arc as the 
applied voltage. 

Below transition r) < 0 and u($I,$~) < 0, so a domi- 
nating space-charge force (Im{Z,/n} < 0) implies a re- 
duced focusing voltage, while above transition 
u($~,$~) > 0, so a dominating inductive wall impedance 
will result in reduced focusing. 

The area of a full bucket is changed relative to 
its low intensity value A0 by the square root of the 
relative change k, in total focusing voltage: 

(13) 
where the bunch boundaries in this case are the bucket 
boundaries, For the limiting intensity’ f2: 

Ib,max = 
u($1,$2) 

2nh2 Im{Ze/n} ’ (14) 

the induced voltage cancels the applied voltage, the 
bucket area is reduced to zero, and the required phase- 
space density is infinite. As we will see in the fol- 
lowing section, this limit can only be reached within 
a certain factor for stability reasons. 

Microwave instabilities -- 
High-frequency instabilities within a bunch can 

occur if the coupling impedance exceeds the value given 
by the Boussard criterion3 T4 : 

Iz,1 < F q W/El2 
n - eB (15) 

which is the coasting beam criterion5 with local values 
for energy spread and current. F is a form factor and 
AE($) the full spread at half height, FWH. 

For the elliptic distribution, FWHH is fi times the 
energy boundary Eb($), which can be found from the 
Hamiltonian with the total potential Ut($> = ktU($): 

[ 1 E2b AE($J) 2 3AE2 
=- 

E = $?$ k, [VW - U(Qz)] , (16) 
FWBH 

so the ratio between local current (11) and energy spread 
squared is constant aloq the bunch and we get the thresh- 
old current: 

Ib -< 
3Fk, lubh rb.11 

2n2h21Ze\/n ’ 
(17) 

From (13) we then get the voZtage reduction at the micro- 
mve threshold: 

3F ImlZe/nj 

1 + for y > yt 

-rr/Ze/‘n - for y c yt 

(18) 
Im{Ze/n} is the reactive part at low frequencies while 
IZel/n is the magnitude of the impedance at high fre- 
quencies corresponding to many wavelength within the 
bunch, For not too short bunches and well-damped reson- 
ance these can be considered of equal magnitude, so for 
defocusing self-forces we get: 

kt = l/(1 t +) = 0.6 (19) 

‘b t .-g!q+J$ = 0.4 Ib,max 9 (20) 

As (Im{Z,/n)I (_ IZel/n, the induced voltage Vi 
will never exceed 40% of the applied voltage, as micro- 
wave instabilities would otherwise blow up the bunch 
area and thus reduce the induced voltage. 

As for short bunches 4~ = $2 - $1 a l/“& for pro- 
tons (A constant) and 4~ a l/G for electrons (AE 
constant), bunch lengthening due to potential well re- 
duction can never ex’ceed 14% for protons and 29% for 
e Ice tmns, as li4m = 1.14 and l/m = I .29. This is 
in good agreement with experimental results (fig. 1 of 
ref. 4). 

I’he bucket urea r~edztction I:y spnec>-charge (y ( y bi 
or ir&ctiVe Wall (y > y-t-1 Wil I niWW ezccPd 235, as 
VTZ = 0.77. In other words, the sprzcc-&zrlge li~lilit (141 
can only be reached within a factor of 0.4 in reasonable 
agreement with experiments (fig. 7 of ref. 1). 

Sinusoidal voltage 

For a sinusoidal voltage, 

V($) = V1 sin $ , VO = V1 sin ips = VlT , (21) 
the normalizing integral u($1,$2) is 

$2 

u(41 ,$Q) = i [uw - Wd] db = -Vlf(41,$2) (22) 
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f($i,$2) = sin $2 - sin $1 - g2 -c~~~)(llos $1 + ens $2) ) 

(2.3) 
and the line density and relative focusing kt: 

h(ji) = Nb 
cos 4 + 4 sin $s - cos $2 - $2 sin bs 

f(Cl,$Z) 

“t - vo k =---s-v-=1+ 
2nh’Ib Im{Ze/n) 

t v - vo “1 f(61r42) ’ 
(24) 

which with $1 and (b2 being bucket limits gives the 
bucket area, 

\i’ A=Ao l+ 
2Th2 lb Im{Ze/n} 

“lf($Jl Yip21 ’ 
(2.5) 

where f(@1,$2) > 0 for y < yt, and f(Ql,$z) < 0 for 
Y ’ Yt9 resulting in a positive X($) for $1 < 4 < $2 in 
both cases as required. The bucket area (25) agrees with 
Bigliani’s7 formula for the $s = 0 case, as the distri- 
butions are identical (cos2), and agrees also ratherwell 
with numerical calculations assuming constant density in 
phase space2 j8. 

For defocusing self-forces and ]Im{Ze/nlI 2 lZel/n 
the microwave threshold is 

‘b ’ F 

3ktV1 / f(41,42) / 
2T2h2 IZ,I/n 

= @$yf$ = 0.4 Ib max I 
e , 

(261 
Short bunches 

In the limit of short bunches, the focusing force 
and the self-force are linear; the potential and the 
line density are parabolic. The formulae can be obtained 
by expanding f($l ,ip2) in $IR = $2 - $1 (in radians): 

f($l,$2) = (t$ cos ~J/12 . 

Relative voltage and microwave threshold: 

v, - vo 
kt=m=l+ 

24.rrh21b Im{Ze/n] 

q+ cos qs 
(28) 

Ql cos +s 
Ib ’ 60.rrh2 1 z,I /n ’ 

(29) 
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Rigid dipole mode threshold 

The net force dF acting on a bunch rigidly dis- 
placed d$, is the integral of the product of the volt- 
age V(4) - VO and the line density of the displaced 
bunch I($ + d$). 

Relative to the focusing force for an infinite 
short bunch with the same charge, we get for sinusoidal 
voltage 

($2 - $1) cos 20, - $sin 2$2 - sin 2Qi) 
kc = - 

2 f(Olr@2) cos Qs 
. 

(30) 

The coherent rigid dipole mode frequency is wc = 
= wso&, where wsO is the small-amplitude, zero- 
intensity synchrotron frequency, while the small- 
amplitude incoherent frequency tii is changed as the 
square root of the relative change in total focusing 
VOltage, cl)i q wsoJk-;-, and is thus intensity dependent. 

I 0 4 Ib,max Ib,max 

Fig. 2 Rigid dipole mode threshold 

Landau damping is lost when the coherent frequency 
is outside the band of incoherent frequencies. The 
threshold is given by k, = kt, so for sinusoidal voltage 
we get 

Vl Ib= - 
2nh2 ImiZe/n} 

1 
1 [ ~- ($2 2 cos 41, - Ccl) cos Qs - i) sin 2@2 - s 

L 
i 

- sin $21 + sin $1 t +(I$~ - $1 )(cos $1 + cos 

tive as required, fig. 3. The advantage of this line 
density is a higher average current for a given peak 
current and bunch length, and thus an increased trans- 
verse space charge limit in terms of average current. 

I T 
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Fig. 3 Flat-topped bunch 

To obtain this bunch shape, a double peaked energy 
distribution with a reduced central density has to be 
created prior to trapping, 

Alternativelv. flat-topped bunches can be created 
by a flat-bottomed’potential well obtained by means of 
a higher harmonic cavity4. Both means are being pursued 
in the PS Booster. Theoretically each method could in- 

\l 
crease the intensity by 30-35X and combined 55-60X. 
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which for stationary buckets ($, = 0 or r) reduces to 
The invariance of the Boussard criterion along a 

1’1 
Ib ’ ’ 2nh2 Im{Ze/n} 

1 ?L +a Qa 7 sin QR- 2 t2sinT -$R cos 2 
1 

parabolic bunch has been known for some time3'12, Later 
, this was shown to be the case also for the elliptic 

distribution in a full bucket of a sinusoidal wave- 
(32) shape’ 3. 

For short bunches kc and kt may be expanded in 4~: 

kc = 1 - $,/(40 cos2 4,) 

Ib < - Vl X 
6 

2Th2 Im{Ze/n) 480 cos Gs ’ 

(33) 

(34) 

The crucial point in this derivation is the assumption 
of a rigid motion. The threshold obtained from a dis- 
persion relat ion9 3 1 O for the same distribution is 20% 
lower than given by the short-bunch formula above. The 
long-bunch formulae (31) and (32) have been verified 
experimentally in the PS Boosterli, where the dominating 
space-charge impedance can be calculated with good ac- 
curacy , 

Flat-topped bunches 

By subtracting two elliptic distributions corres- 
ponding to different bunch lengths, flat-topped bunches 
can be created, the net phase space density being posi- 

References 

1. S. Hansen et al., IEEE Trans, Nucl. Sci, NS-22, 
No. 3, 1381 (1975). 

2. C.E. Nielsen and A.M. Sessler, Rev. Sci. Instr. 30, 
80 (1959). 

3. D. Boussard, CERN-Lab. II/RF/Int,/75-2 (1975). 
4. P, Bramham et al., IEEE Trans. Nucl, Sci. NS-24, 

No. 3, 1490 (1977). 
5. E. Keil and W. Schnell, CERN-ISR-TH-RF/69-48 (1969). 
6. B. Zotter, CERN/ISR-GS/76-11 (1976). 
7. U. Bigliani, CERN Int. Rep./SI-EL/68-2 (1968). 
8. C. Bovet et al,, CERN Int. Rep. /MI%-SI-DL/70-4 

(1970), p. 32. 
9. F. Sacherer, CERN/SI/BR/72-5 (1972). 

10. G. Besnier, Th&e de 1’UniversitG de Rennes, 
B-282-168 (1978). 

11, F. Pedersen and F, Sacherer, IEEE Trans. Nucl. Sci. 
NS-24, No. 3, 1396 (1977). 

12, W. Hardt, private communication. 
13. E.C. Raka and H. Hahn, BNL 50471 (1975). 


