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Abstract 

ENERGY LOSSES OF AN ELECTRON BUNCH MOVING ALONG THE AXIS 

OF A CIRCULAR WAVEGUIDE WITH PERIODICALLY PERTURBED WALL. 

M. Chatard-Moulin and A. Papiernik 
* 

The field radiated by an electron bunch moving 
along the axis of a circular periodic waveguide is ob- 
tained from Maxwell’s equations using a perturbation 
method. The guide shape is defined by its radius 
a(z) = a, I1 + ES(Z) } where a, denotes the mean guide 
radius, s(z) the guide geometry and E a small pertur- 
bation parameter. Electromagnetic field is calculated 
up to second order in E . The total energy loss suffe- 
red by the bunch and the potential acting on individu- 
al particles are related to the following parameters : 
charge, shape and width of the bunch, energy, guide 
geometry, by comparatively simple formulas. The influ- 
ence of these parameters is calculated for a gaussian 
bunch and a rounded iris waveguide. This example cla- 
rifies under what conditions energy losses are virtual- 
ly independent of energy and shows the importance of 
the bunch width. 

Assumptions made in the problem 

The bunch is moving with a constant velocity v. 
Its current density is given by jz=i(t-z/v)/np* where 
i(t-z/v) is the instantaneous current and p the bunch 
radius. The waveguide has a period b. Its radius is 
described by the equation 1,2 

a(z) = a0 (1 f ES(Z)) (1) 

where E denotes the perturbation parameter. The perio- 
dic function s(z) which characterizes the wall geome- 
try is taken to have zero mean value. 

Fig. 1 

The Fourier series expansion of s(z) is : 

s(z) = F cp exp(j p b 2nz) with Co=0 
P z-00 

(2) 
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Method of radiated field calculation 

The field radiated by the bunch is calculated from 
Maxwell’s equations, taking into account the boundary 
condition at r = a(z). Because of the circular symmetry 
this field is entirely described by the asimuthal com- 
ponent Hg of the magnetic field. In the other hand, 
it is convenient to introduce the variable r = t-z/v 
and to use the variables (r,z,r) instead of (r,z,t) 
because we are only interested by the field travelling 
;~~:t~;e;;;c;.=T:; ~;-v;~~$ation equation can be 
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and the boundary condition 
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ar dz aT a2 (4) 
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The field HB(r,z,.r) is expanded in Dini’s series , 

Fourier’s series-and Fourier’s integral as far as its 
r,z,r dependance are concerned, respectively. 

H ;‘g +; i 
jpi$E j 2rrvr 

e dT (5) 

-CZ ps-Cc nm1 
u,p(v)Jl (xon 5 )e 

0 

th 
J 
r&t 

J denote the Bessel functions and xon the n 
Af Jo(x) 

unpw is then given by the equation : 
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I(v) is the Fourier transform of i(r) and 6 = 1 if 
p=O and 6 

PO 
= 0 if p # 0. 

PO 

The field derivative at r = a appears at the 
second member of this equation and’may be calculated 
by a Taylor’s series expansion of the function on the 
boundary condition 

a (rHe) a2(rH0) e2a2 s* a3CrH$ 
0 
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The field is then calculated by a perturbation method 
in which He is taken as the sum of the magnetic field 
H&O) radiated by the bunch in a circular waveguide of 
constant radius a0 
series of E, 

and corrective terms expanded” in 

H 
e 

= ,g”) + E HA” t ~~ Hc2) t., , ~~ f)t,. , (8) 
e 

This expansion together with the Taylor’s series 
of boundary condition gives H&‘)from the nowled e of 
H&O), then H$ 2, from the knowledge of He0 ( t and Hi’) and 
so on. 

Energy losses and longitudinal electric field 

This method allows the calculation of the elec- 
tromagnetic field by mode superposition of the pertur- 
bed waveguide. Keeping only synchronous modes we dedu- 
ce easily energy losses and longitudinal electric 
field acting on a particle up to the second order in E 

Energy loss Per period of the bunch : 

where 
r 

Q(v)= 9 
v 
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and for a bunch of vanishing radius. 

1 , I1 are modified Bessel functions, E the free- 
&ce permittivity and N the greatest igteger satis- 
fying : 

X ON d 2n a0 VY p/ bc (12) 

and v 
equati% (6) : 

the roots of the u,(v) coefficient in the 

1 
V 

V’ 1 (13) 

If the particles velociry is strictly equal to 
the speed of light (infinite y ) 

E221r w=-- 

EOC 
If 

p=l 
p Cp cp 1 

nal 
vnp II(vnp)y (14) 

with 
cp b x2 c on 

V 
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(15) 

*A refined perturbation method (Foincari? method) has 
been also used which gives virtually the same numeri- 
cal results. 

Longitudinal electric field EZ(?> acting on the bunch 
particle for Y infinite 

E&r) =- +$ f P Cp CWP i 1 (T-x) sin2nv 
0 p=l n=l np x dx 

(16) 

f(r) is derivative of i(T). 

Examples 

Ihe bunch is supposed to have a zero radius and a 
gaussian longitudinal distribution. Ihe total charge is 
IO9 particles and the standard deviation l,=c ~~ is 
of the order of millimeter. ‘he shape of the waveguide 
is described by s(z) = cos* nz/b, where the period 
b=3,5 cm and the smallest radius al = 1,152 cm.The lar- 
gest radius a2 is normally chosen in a way consistent 
with the perturbation method that is to say (a2-al) 
small compared with ao. lhe inner radius al and the 
period b are virtually those of the SLAC. 

The set of curves of Fig.2 are applicable to 
a2=1,3cm. They shm that the energy loss initially in- 
creases quickly with Y and eventually reaches a plateau. 
The smaller the bunch length, the more quickly is the 
energy loss leveling reached. 

n 

Loo y 
Fig. 2 - Energy losses expressed in 
terms of y and the bunch length lo. 

The set of curves of Fig.3 for y infinite shw 
both the influence of bunch length andof corrugation 
depth. The dotted curves represent the case wnere 
E s(z) is much too large for the application of the 
perturbation method. Nevertheless, the order of magni- 
tude agrees with the values measured in references 5 
or calculated in references 6y7 for the SLAC. 

Fig.4 indicates the evolution of the acting field 
E,(t) when Y infinite for a2 = 1,3cm and 1 = 0.75mm. 
The result is similar to the one calculate 8 
drical cavitya. 

for a cylin- 
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Fig. 3- Energy loss versus bunch length 
(1,) and corrugation depth (a,). 
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Fig.4 - Longitudinal electric field 
acting on a gaussian bunch. 
The dotted line represents the bunch 
shape. 

Non periodic structure 

The results obtained for periodic structures may 
be extended to non periodic structure by taking the li- 
mit when the period b goes to the infinity (in this li- 
miting process the shape of the perturbation is main- 
tained). Under those conditions the shape of the struc- 
ture Fig.5 is again described by the equation ( l), s(z) 
goes to zero as z goes to infinity. If we call S(T) the 

Fourier transform of s(z) the total energy loss in the 
case where y is infinite is : 

- E2 O3 w=- 
2 liFOC 51sm12 i vn(‘,) II(v,(~))/’ dr, 

0 t-i= 1 

with 
*onC I V,(C) = ; r t - - 

8n2a2c ’ 
0 

Fig. 5 

Conclusion 

We have calculated the energy loss suffered by an 
arbitrary current distribution for the case where the 
waveguide is weakly perturbed in periodic fashion, up 
to second order in the perturbation parameter. In prin- 
ciple, the loss of energy originates from a coupling to 
all the TMwaveeuide modes that are synchronous with 
the electron beam, but in fact only a few modes are si- 
gnificant because of the fast decay of the radiated 
field spectral density. In this respect, the following 
points should be noted. 

a) in the expression of the energy loss the bunch 
shape enters through the square of the current distri- 
bution spectral density. 

b) the geometry of the guiding structure enters 
through the factor p C C- 

c) a finite value’of f 
and the value of vnp 
contributes to the reduc- 

tion of the number of relevant term in the series. 
We have shown that the energy loss reaches a limit 

as y goes to infinity. The shorter the bunch length, 
the higher is that limit. 

Finally our results can also be applied to non 
periodic structures. 
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