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Abstract 

A computer program is presented which assists the 
designer of a circular electron accelerator or storage 
ring in finding out the limits of beam stability. The 
most prominent longitudinal and transverse instabili- 
ties are taken into account with emphasis on coherent 
bunch oscillations. 

1. Introduction 

The program calculates parameters, thresholds and 
growth rates for various effects known to affect the 
stability of high-intensity electron beams. Generally 
it does not endeavour to find equilibrium conditions 
after an instability has occurred, and it neglects 
coupling between the individual effects. Only single 
beam stability is treated; beam-beam effects are not 
considered. The program is based on currently accep- 
ted models of beam stability, most of them confirmed by 
experiments. The FORTRAN code and a long write-up can 
be obtained from the authors. A numerical example, 
based on the parameters of the Large Electron-Positron 
storage ring LEP’ is presented at the end. 

2. Impedance Estimates 

Most of the models require a detailed knowledge of 
the impedance -Jersus frequency. Three types of impe- 
dance are considered: i) a typical high-Q resonator is 
used to assess the disturbance it might present to the 
beam if one of the beam frequencies happens to fall in- 
to its narrow bandwidth; ii) a broad band impedance 
approximates the effect of a multitude of individual 
high-Q resonators on single-bunch phenomena; iii) the 
impedance of the smooth resistive vacuum chamber is ex- 
pected to have an influence mainly on single-bunch 
phenomena due to its peculiar frequency dependence 
(lAt-$), though it contributes also to multi-turn effects. 

2.1 Longitudinal impedance 

The relevant quantity is the complex impedance ZL 
divided by the mode number r = w/o0 (0s - circular re- 
volution frequency). For a resonator, approximated 
by a parallel P&C circuit, this quantity becomes, with 
Qr as quality factor, 
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It is plotted versus frequency in Fig. la. High-Q re- 
sonators drive instabilities involving the bunches pas- 
sing during the time 2nQ,/w,, e.g. coupled-bunch and 
Robinson instabilities. - The RF cavities, including 
their higher modes, arethemost prominent source for 
this type of impedance which can be computed by stan- 
dard programs* 1 3. The broad-band impedance, being the 
source of the short-range wake field, creates oscilla- 
tions of a single bunch, turbulent bunch-lengtheningand 
real frequency shifts. This impedance is due to aper- 
ture changes, bellows and numerous other objects, each 
resonating at a different frequency. For coherent bun- 
ch oscillation, we approximate it by a resonator with 
Qr = 1, having a resonance frequency wr which we choose 
to be about half of the cut-off frequency of the lowest 
longitudinal mode in the vacuum chamber. The shunt 
impedance R, of this resonator can be estimated by for- 
ming the limit lim/ZLPES/rl = IZ/r/e = Rsuo/ur which 

O-+0 

* CERN, Geneva, Switzerland 

depends only on the amount of impedance per unit length 
of the ring and not on the size of the machine. For 
the older machines /Z/r\, is in the range 10 to 50 R, 
for modern machines with smooth vacuum chambers such as 
PETRI and PEP it is considerably smaller. For turbu- 
lent bunch lengthening, the broad-band impedance is ap- 
proximated by ZL/r = const at low frequencies and by 

ZL/r Q w a-1 (0 f a c 1) at high frequencies, because 
such an impedance has been inferred from the measure- 
ments in SPEAR4. The impedance of the smooth, resis- 
tive wall of the vacuum chamber is neglected against 
the broad-band impedance in the longitudinal case. 

2.2 Transverse impedance5 

In order to obtain the narrow-band transverse im- 
pedance the deflection modes of cavity-like objects 
have to be computed6. The transverse impedance ZT of 
a narrow-band resonator has the same form as (1) except 
that Rs*tio/wr is replaced by PT. The broad-band im- 
pedance can be estimated from the longitudinal one by 
using the relation7 

ZL (w) x (2R/b’) l (ZL(til)/r) 12) 

where b is the effective radius* of the vacuum envelope 
around the beam; it is equal to the radius for objects 
with circular cross-sections. R is the average radius 
of the machine. The relation (2) has to be applied 
separately to objects with large radius b (cavities) 
and to items with small b (bellows etc.). The total 
ZT is then the sum of the two contributions. The re- 
lative contribution of the RF cavities to the total 
transverse impedance will be smaller than to the longi- 
tudinal one. Equation (2) indicates that the trans- 
verse impedance is proportional to the machine radius R 
because ZL/r is approximately independent of R as ex- 
plained before. Hence, transverse stability becomes 
more critical in large machines. The impedance of the 
smooth, resistive pipe is brought about by the skin 
effects. 
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Fig. 1. a) Impedance of a resonator having Q, = 1; 
b) Envelope of power spectrum hm(hl) for sinusoidal modes. 

3514 0018-9499/79/0600-3514$00.75 0 1979 IEEE 

© 1979 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.



3. Particle Distributions and Modes of Oscillation 

Coherent bunch oscillations can be described by 
two independent types of mode: the bunch-shape modes 
describing the distortion of the bunch itself and the 
coupled-bunch modes describing the motion of the dif- 
ferent bunches relative to each other. The longitu- 
dinal-shape modes9 consist of the dipole (rigid-bunch) 
mode (m = l), the quadrupole mode (m = 2) etc. ; in the 

transverse case, the different head-tail’ modes descri- 
be the shape oscillations, labelled by the number of 
nodes m of the perturbed motion. The coupled-bunch 
modes are labelled with n = AQinkbj(2n) where A@ is 
either the momentary synchrotron or betatron phase ad- 
vance of one bunch relative to the next one, and kb is 
the number of bunches. 

The undisturbed long.distribution is Gaussian with 
an instantaneous current I(t) 

I(t) = LPexP(-c2t2/2ni) = (aRIo/kbcs)exp(-c’t*!20:) 

(3) 
where es is the rms bunch length. The instantaneous 
perturbed current is made up of the contribution of all 
modes 

I(t) = 1 Cm Am exp(j (Wp+h) (4) 
m,n 

In the limit of vanishing intensity the spectrum con- 
sists of lines at frequencies 

(I) = w. (k*kb t n t mQ,) = uc(P + mQ,) (5) 
P 

in the longitudinal caseI*, and 

The longitudinal bunch-shape modes are approxima- 
ted by siilusoidal modes 

h,(t) = ;I,. 
[ 
(mtl) * (ct/ns) 1 for m - “,“d”a (7) 

though the real modes’ ’ seem to he between sinusoidal 
and Hermitian modes. For the computation of coherent 
frequency shifts the power spectrum hm(bl) of these 
modes is needed’r 12. Its envelope is shown in Fig. lb. 
For the transverse perturbation (the head-tail modes), 
the same sinusoidal modes are used with a modification 
to take into account the effect of finite chromaticity 
E; = (dQ/Q)/(dF/p)5. This shifts the mode spectrum by 
wF = S*Q*w,*j’~, and hm (w-w,) must be used in the tran- 
scerse case as indicated in’Fig. lb. (yt is the 
Lorentz factor at transition energy). 

4. Coherent Bunch Instabilities 

The impedance produces a complex frequency shift 
Aw of the frequency (ti The 

real part AuR gives t R 
defined by (5) and (6). 

e coherent frequency shift of 
the mode (m,n) due to the reactive impedance while the 
imaginary part AojI gives the damping rate (if AU, > 0). 
The longitudinal frequency shift12 is 

mw 
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a IO 
mn = ’ m+l 3kbhvcos$s 
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where ws - circular synchrotron frequency, h = wFF/w, , 
Vsin$, - energy gain of synchronous particle. The 

where op is given by (5). The transverse frequency 
shift5 is 

Aomn = j 
eff 

mn 
(10) 

with E-beam energy, and the effective transverse impe- 
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with wP given by (6) . For a coupled bunch mode n the 
summation is only over every kbth mode. However, all 
frequencies contribute to the frequency shift Awm of 
the single-bunch modes 

kb-1 

Awm = U,‘kb) c Aurn (12) 
n=O 

Equations (8) and (10) give the frequency shifts for 
all coherent bunch instabilities in the limit of 1 Awl 
being small compared to the bandwidth of the resonator. 
It turns out that the sums (9) and (11) converge very 
slowly for the reactive part. Fortunately, the sums 

can be replaced by an analytical expression’ 3 and this 
is used in the program. 

For the impedance of the smooth resistive wall’ 
no such expression is available and the straight- 
forward summation must be carried out. This is done 
in the code but only up to the lowest cut-off frequen- 
cy of the pipe. In this crude way the diminishing in- 
fluence of frequencies in the propagating range is 
taken into account. For the same reason, the compu- 
tation is limited to the modes m = 0,l. Higher modes 
have a spectrum entirely in the propagating region of 
the pipe where the coupling to the beam is weak. The 
part of the code performing the summing uses formulae 
given elsewhere12 which are more appropriate than (11) 
for this purpose. However, approximatipns are used by 
the code which limit the maximum admissible betatron 
phase-shift between the head and the tail of the bunch 
to 5 rad. 

A rule of thumb for suppressing transverse coup- 
led-bunch modes is that the rms spread in the frequency 
Q-I~I,, somewhat different for each bunch, should exceed 
the growth rate Im(Aw,) . Since this spread arises 
from the difference in bunch populations via the 
Laslett tune-shifts caused by the ac fields only14~15, 
these tune-shifts are calculated by the program so that 
the spread in the bunch populations required to achieve 
the decoupling may be estimated. 

5. Turbulent Bunch-Lengtheninq 

It is assumed that turbulent bunch-lengthening is 
caused by the same microwave instability as occurs in 
proton machines16. Adapting the formulae to electron 
machines yields for t.he equilibrium rms, energy spread 
2 
” r.1 c 

e I 
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FE- ’ Yt 
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valid for 6, > 6,0 where 6Eo is the spread for vanis- 
hing intensity. The form factor F is about 6 for a 
Gaussian distribution in energy. Inserting from (3) 
for the peak current and eliminating 6E by means of 
6, = (Qs*yf) * (as/R) yields for the equilibrium bunch 
lenqth u 

S 3 45-e To ‘ZL(W) 

= F kb y: Qg E l i i 
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This equation also defines either the threshold current 
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for a given impedance, or the threshold impedance if 
the current is given; in both cases, us must be re- 
placed by the natural bunch length use. For the com- 
putation of gs for given I, and ZL/r, the SPEAR-type4 
broad-band impedance (section 2.1) is used in the pro- 
gram. Thus, for low frequencies 

/ZL/rI = Za(wo/wa) w<w a (15a) 

independent of o; for high frequencies 

/ ZL/r 1 = za holwa) ’ (w/w,) 
a-l 

wro a (1%) 

where Z,, o, and a are constants. In order to obtain 
a numerical value from (15b) a typical frequency w = wc 
must be selected, If WC = c/us is used in (15b) and 
the latter introduced into (14), the scaling law4,des- 
cribing the observed bunch-lengthening in SPEAR II very 
well, is obtai.ned. The program calculates, for both 
values of /Z/r/ given by (15), the threshold current 
and in addition, if the threshold is exceeded, the new 
equilibrium values for bunch length, energy spread and 
peak current. The result obtained with (15a) should 
be used for long bunches; the results based on (15b) 
should be preferred for short bunches. Bunch lengthe- 
ning bY Potential Well distortion is neglected as it is 
always Small for realistic impedances , 17 

6. Program Structure 

The program requires as input only a few basic 
parameters of the accelerator and information on the 
natural beam <dimensions. The code computes the ef- 
fects sequentially starting with turbulent bunch- 
lengthening and Laslett tune-shifts. The user has the 
choice of retaining for further calculation either the 
natural bunch dimensions or the equilibrium values af- 
ter turbulence. The main part of the program is con- 
cerned with coherent bunch motion. For the longitu- 
dinal bunch oscillation, the combined effect of up to 
three resonators (RF, broad-band, narrow-band parasi- 
tic) can be evaluated. The program computes the com- 
plex shift AU, (8), and it can search for the most un- 
favourable tuning of the narrow-band resonator. 
Landau damping from the non-linearity of a perfect RF 
waveform is estimated, For transverse bunch oscilla- 
tions two resonators can be taken into account, a high- 
Q one and a low-Q one. The complex frequency shifts 
*%n (10) and AU, (12) are calculated for each of the 
resonators separately as well as for their combined 
effect. The effect of the smooth, resistive pipe on 
transverse bunch oscillations is computed for the head- 
tail (shape) modes m = 0,l neglecting its contribution 
above the cut-off frequency of the pipe. 

7. Example 

The program has been used extensively to stud 
beam stability in the 3.5 km radius version of LEP 78 

for a variety of operating conditions. 
numerical resultsI* 

The following 
refer to the nominal LEP energy of 

70 GeV. The longitudinal low-Q impedance is obtained 
by averaging the resistive impedance of the parasitic 
TM modes in the RF cavities over 250 MHz bins and ad- 
ding to this the impedance of the chamber. The latter 
is described by (15) with a = 0.32, wa/2n = 1.3 GHz and 
Z, = 0.17 MR, which is the SPEAR II impedance4 except 
that Za12Rn is reduced by a factor 5 to take into ac- 
count the smoother vacuum chamber of LEP. The resul- 
ting histogram (Fig. 2) is approximated by an impedance 
(15b) with a = 0.32, wa/21r = 1.3 GHz and Z, = 0.56 MR 

for the calculation of bunch lengthening. The latter 
indicates that the natural bunch length (~so = 1.3 cm) 
and energy spread will increase by about a factor 4 in 
LEP because the design current (11 mA) exceeds the 
threshold current (1.2 mA). For computation of long. 
bunch stability the histogram is approximated by a reso- 
nator of 0, = 1, f, = 1.3 GHz and R, = 0.56 MR as shown 

in Fig. 2. The lowest parasitic TM mode (f, = 525 MHz) 
of the RF cavities is selected to represent the typical 
narrow-band resonator. Taking into account dimensio- 
nal tolerances on the cavities results in Qr 2 3000 and 
Rs 21450 Mi’l. The computation of frequency shifts (8) 
with these two resonators shows that all growth rates 
are small compared to radiation damping (T = 6 ms). 
However, if the RF fundamental is added, a few coupled- 
bunch modes having frequencies in the RF bandwidth be- 
come very strong and a feedback system becomes impera- 
tive. 
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Fig. 2. Estimated resistive longitudinal broad-band 
impedance and approximation by a Q, = 1 resonator. 

In order to obtain parameters for a typical high-Q 
transverse impedance, the lowest deflecting mode (f, = 
565 MHz) of the RF cavities is calculated6. Due consi- 
deration of the spread in f, gives Q, z 3000 and PT = 
4.8 GO/m. The low-Q impedance is obtained from the 
long one 
and I?,,, = * 

by 
4. 

means 
6 M&Urn 

of (2)-yielding f, = 1.3 GHz, Qr 
. As in the longitudinal case, 

= 1 
the 

coupled-bunch modes have a small growth-rate due to the 
wide spacing of the four bunches, but for non-zero chro- 
maticity a single-bunch head-tail instability becomes 
strong indicating the importance of a close chromaticity 
control in LEP. 
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