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STABLE PARTICLE MOTION IN A LINEAR ACCELERATOR WITH 
SOLENOID FOCUSING* 
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Abstract Introduction 

We derived the equation governing stable particle 
motion in a linear ion accelerator containing discrete 
rf and either discrete or continuous solenoid focusing. 
We found for discrete solenoid focusing that 

The stability relations are derived for a linear 
ion accelerator with solenoidal focusing for the dis- 
crete case with solenoids in the drift tubes and for 
the continuous case with the accelerator contained in 
one continuous solenoid. We begin by giving the 
first-order transport matrix for the so1enoid.l 
Next we calculate the transport matrix for one cell 
and derive the stability relation for the discrete 
solenoid. Finally, we examine the case of the contin- 
uous solenoid and show that it is a special case of 
discrete focusing. The stability curves for both the 
continuous and discrete solenoids are shown in Figs. 
1 and 2, respectively. 

COB lo = (1 + da) cos 0/2 t ; ;; bid2 ---- 
4R sin 612 

a= l/f and R + 2d = BA, 

where V, 6, f, R, and d are the phase advance per 
cell, precession angle in the solenoid, focal length 
of the rf lens, length of the solenoid in one cell, 
and the drift distance between the center of the rf 
gap and the effective edge of the solenoid. The rela- 
tion for a continuous solenoid is found by setting d 
equal to zero. The boundaries of the stability region 
for 6 vs A with fixed !Z and d are obtained when 
CO8 u = tl. 

*Work performed under the auspices of the U. S. 
Department of Energy. 
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Fig. 1. Stability diagram for the continuous sole- 
noid. Nonshaded areas are stable regions. Delta 
(AN) is 6X divided by the focal length of the rf 
lens and 0 is the precession angle in the solenoid. 

First-Order Solenoid Transport Matrix1 

We first consider the interior region of the sole- 
noid where the magnetic field is assumed constant and 
directed along the solenoid axis (z axis). A particle 
with nonzero transverse velocity VT will spiral in 
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Fig. 2. Stability diagram for the discrete solenoid. 
Nonshaded areas are stable regions. Delta (AN) is 
f3x divided by the focal length of the rf lens and 0 is 
the precession angle in the solenoid of length l/2 SA. 
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the magnetic field and will project a circle in the xy is a rotation matrix and 
plane. Let 

C s/ci 0 0 

BO 111 magnetic field strength directed along z, 1 
VT - transverse velocity of the particle, 
vz = longitudinal velocity, 
R- = length of the solenoid, 

and 
0 = the precession angle 

= eB,!?/ (mv,) . (1) 

-SC4 C 0 0 
M= 

0 0 C SfCi 

where e and m are the electric charge and mass of the 
particle. The transport matrix for the interior of 
the solenoid S is 

s = 

1 (9. sin S)/0 0 11(1 - CO8 0)/e 

0 co9 0 0 sin 0 

(2) 
0 R(cos e- 11/e 1 (!I sin 6)/e 

0 -sin 0 0 COB 8 ! 

where S operates on the vector V 

X 

X’ 

-I_ V= 
Y 

Y’ 

and 

X’ = dx/dz 

Y ’ = dy/dz . 

The fringe field transform P is 

(3) 

The total transport matrix M, for the solenoid is 

r c2 - sclci SC s2/al 
-sea c2 -s2, SC (A - l/focal length of the rf lens). Because one 

M, = F(-B)SF(B) = (4) 
-s2/, c2 

period consists of an integral number of cells, n, one 
-- - -SC SC/a has a relation between 0, A, R, d and cos )1, where2 

1 S2U -SC -SCa c2 1 

with S = sin (e/2), C = cos (O/2), and ~1 - 8/2R. 

The matrix MS may be written as 
- 

M,=MR I - - 

where 

R= 

3512 

C 0 s 0 

0 C 0 s 

-S 0 c 0 

0 -S 0 c 

1 0 0 -Sii C J 

is block diagonal, Thus we decouple x and y and write 
for x, 

[::‘I - [ -fi, ‘I’] [ :I’] ’ t5) 
Transport with Discrete Solenoid 

One cell in a linac consists of one-half of an rf 
defocusing lens followed by a drift, a solenoid, a 
drift, and one-half of the rf defocusing lens. The 
transport matrix MC for the cell is 

- 

Mc=fDMDf , (6) - _---- 

where f is the rf lens, D is a drift, and M is the 
solenoid in the rotated Frame 

(7) 

(8) 

(9) 

and 

2Cd +Z!JS/B-SOd2/2R 1 
Mc= 

- cA(+y) t,($-$ (1+$$)2) (I+dA)C+($+j$-~2)S 
I 

(10) 

COB U - l/2 Tr (Mc) 

ein e/2 (lla) 

Continbous Solenoid 

The main calculational difference between the con- 
tinuous case and the discrete solenoid case is that a 
rotation matrix does not exist, which when applied to 
2, Eq. (21, decouples x from y in a fixed reference 
frame. We could approach this problem in the Larmor 
frame using canonical variables to obtain a decoupling 
in x and y for the solenoid but we would then have 
Coriolie forces in the gap. We sidestep this problem 
by making the following observation. The continuous 
solenoid case consists of the following transport 
stream. 



SfSfSf ----m- 

While the discrete case is 

SFDfDFSFDfDFS.,. ------------- 

See Eqs. (2), (31, (71, and (8). The difference be- 
tween the two is that f in the continuous case is F D 
f D F in the discrete case. We, therefore, study F D 
f D F and take the limit d + 0 to obtain 

Li.mFDfDF= 
d+O----- 

1 0 0 0 

A/2 1 0 0 

0 0 1 0 

0 0 A/2 1 

=f . - 

L 

Thus, the stability relation Eq. (lla) for the dis- 
crete case may be used for the continuous case by 
setting d = 0. 

Results 

The stability diagrams for continuous and discrete 
solenoids are given in Figs. 1 and 2. Delta (AN) 
is 61 divided by the focal length of the rf lens and 
positive delta corresponds to defocusing rf. The pre- 
cession angle 9 is proportional to the solenoid’s mag- 
netic field strength, length, and the particle’s mass, 
charge, and velocity Eq. (1) . 

The nonstable region is shaded. For the discrete 
case, both the solenoid length R, and drift distance 2d 
were e ual to l/2 @I, following Smith and Gluck- 
stern. 9 Note that 1 cell = 1 period. 

Each region is bounded by a line that is indepen- 
dent of the rf defocusing strength A. The reason for 
this may be seen by factoring the equation for cos p 
(Eq. lla) into two pieces, one of which is independent 
and one is linearly proportional to A 

co3 1-I = (c - dS 9/2R) + (Cd + St/t3 - d2S0/4a>A , (lib) 

A region boundary (cos !J _ = +l) is independent of A if 

Cd + St/e - d2S8/4R = 0 , (12) 

and 

C - dS8/2J = cos p = t 1 . (13) 

The consistency of these two equations is shown by 
solving for 8 in Eq. (13) and substituting the result 
in Eq. (12). Th is results in the identity 

c2 t s2 = cos2 e/2 t sin2 812 = 1. 
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