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Abstract 
TABLE I 

A particle tracing code was developed to study 
space-charge effects in proton or heavy-ion linear 
accelerators. The purpose is to study space-charge 
phenomena as directly as possible without the compli- 
cations of many accelerator details. Thus, the accel- 
erator is represented simply by harmonic oscillator or 
impulse restoring forces. Variable parameters as well 
as mismatched phase-space distributions were studied. 
This study represents the initial search for those 
features of the accelerator or of the phase-space dis- 
tribution that lead to emittancc growth. 

Input Distributions and Matching1 

In the absence of space charge, a two-dimensional 
phase-space distribution is matched if it has the same 
shape as that of the trajectories of the outer-most 
particles, With space charge, if forces do not depend 
explicitly on time, it is possible to produce 
six-dimensional phase-space distributions, called 
equilibrium distributions, that are time independent 
ant! are matched to the accelerator, even if space 
charge introduces nonlinearities and couplings. 

Equilibrium calculations give space-charge limits 
in terms of accelerator parameters that are useful 
scaling laws for space-charge dominated beams. Because 
the single-particle Hamiltonian is conserved, we have 
equilibrium if the distribution function is a function 
of the Hamiltonian. 

f(;,;, = F(H) . (1) 

For the function F, we choose one of the following 

F = const, x n(Ho - H)“-l , (2) 

where n is an integer. These are the same functions 
used in the original one-degree-of-freedom work by 
Gluckstern, Chasman, and Crandall.:! We generally 
consider n = 2 type distributions because they seem to 
correspond most closely to experimentally observed 
distributions. 

We use the following two-degree-of- freedom model 

H= 2 + kr2 + 
2m 2 2 

t e$(r,z) , (3) 

where 4 (r,z) is the unknown space-charge potential. 
All coordinates and momenta are relative to the syn- 
chronous particle. To determine 4 we must solve a 
nonlinear Poisson equation with three parameters: n, 
a, and n. The space-charge parameter 1-1 is propor- 
tional to the particle density at the bunch center 
and is defined by 

u= 
2kl.l, + kzi-l, > 

2k + k z 

where -ur is the ratio of the radial space-charge 
force to the radial external restoring force at the 
bunch center with a similar definition for lJ,. The 
tune depr ssion factor in the direction i is 
(1 - lii1192* The parameter Cr. is the ratio of the 
longitudinal force constant to the radial force con- 
stant and is the only accelerator parameter relevant 
to the space-charge physics in the present model. 

The computer code RZED (R-Z Equilibrium 
Distribution) was written to solve the nonlinear 
Poisson equation, From the resulting distribution 
function, a relation between the beam current, 

*Work performed under the auspices of the U.S. 
Department of Energy, 

ACCELERATOR PARAMETERS 

Frequency f 109 Hz 
Initial velocity p 0.04 
Phase advance 0 11 27.4’ (5T solenoid 

rshr 
Electric field E,T 

Or Bpol 
1.53 MVTm 

= 1.5T quadrupole) 

Synchronous phase 4s -300 

emittance, and radius may be determined 
accelerator parameters (see Ref. 1). 

in terms of 

I = F(l! ,o ,n) 
l/2 

(rlf )3’2 (5a) 

rif i J l/2 
= G(U,a,n) - 

“zhr 

6-l , (5b) 

The space-charge physics calculated hy RZED is con- 
tained in the functions F(i.l,o,n)g and G(1! ,a,n). These 
space-charge effects are shown in Fig. 1 where the 
current and the radius are plotted as a function of 
the space-charge parameter. The other REED parameters 
are fixed at ~1 = 0.67 and n = 2. These curves repre- 
sent different equilibria for a fixed normalized 
transverse emittance value of rl = 7.4 x 10-7 m-rad 
and for a fixed accelerator described by the para- 
meters in Table I. 

Higher density distributions correspond to larger 
beam radii. For a given accelerator, there is no 
limit to the current that can be transported except 
that the matched radius also increases without limit. 
To decrease the space charge effects (decrease 11) for 
a fixed current and emittance, one must decrease the 
beam radius by increasing the external focusing forces. 

Variable Parameters 

If the product E,T sin 4, is proportional 
to 8 during acceleration, then the longitudinal focus- 
ing force is constant, and the bunch length remains 
fixed, This result holds for an equilibrium 
distribution even in the presence of space charge, 

If the electric field and the synchronous phase 
remain constant, then, in the absence of space charge, 
the bunch length increases as a1i4. With space 
charge this result is modified. It is important that 
the bunch length does not increase faster than 8; if 
it does, the phase extent of the bunch will increase 
and will cause unstahle longitudinal motion 
in a real accelerator with a finite potential well, 

For slowly varying parameters we expect instan- 
taneous equilibrium to be maintained, even though the 
condition given by Eq. (1) will not be preserved. 
(However, for one degree of freedom, Eq. (1) is pre- 
served but the final F differs from the initial F,) 

The HOT Code 

The HOT (Harmonic Oscillator Tracing) code in its 
usual form uses harmonic oscillator restoring forces 
in all three directions. Acceleration is applied con- 
tinuously , Couplings and nonlinearities occur only 
through space charge. The space charge forces are 
calculated with an area-weighted particle-in-cell 
method using a variable r-z mesh (up to 15 x 30 cells). 
Up to ten thousand macroparticles can he traced. Input 
tables provide the desired variation of transverse 
wavelengths, accelerating gradient, and synchronous 
phase as functions of the distance along the struc- 
ture. Time is the independent variable. 
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TABLE II 

TRANSVERSE SIZES AND EMITTANCES 
FOR MISMATCHED BEAMS 

Initial Final 
rlJrl(-J Sizea Emittanceb Sizea Emittanceb 

(mm) (mm-mrad) bnm) (mm-mrad) 

1 0.66 0.046 -(matched) 
1J2 0.47 0.023 0.79 0.024 
1J4 0.33 0.011 1.00 0.013 
i/8 0.23 0.006 1.26 0.009 

aSize of fitted transverse phase-space ellipse 
containing 90% of the particles. 
bNormalized rms transverse emittance. 

Because the longitudinal restoring force de- 
creases with 0, the bunch length increases. This 
increase causes the net transverse focusing forces to 
increase. In our example, the final charge density is 
0.7 of the initial value. The harmonic oscillator 
adiabatic invariant predicts a final beam radius of 
about 0.6 of the initial value. But we find in 
reality that the final radius is about 0.9 of the 
initial value so this space-charge coupling effect is 
small. At least part of the explanation is that the 
final distribution is more sharply peaked in the 
center than the initial distribution. 

Mismatches. Linac simulations by Chasman have 
indicated that the output emittance approaches a non- 
zero limit as the input emi ttance is reduced to zero. 
In the present model, Eq. (5) and Fig. 1 show that we 
can maintain equilibrium and still decrease the emit- 
tance indefinitely keeping the beam current and accel- 
erator parameters fixed + In so doing, the space- 
charge parameter p approaches unity and the matched 
beam radius increases indefinitely. There is no lower 
limit to the output emittance. Of course, the finite 
bore dimension will imposes a limit but there is no 
limit caused by emittance growth. Consider the situ- 
ation where the x to x’ ratio in a distribution is 
fixed and the emittance is reduced below its matched 
value keeping the current and accelerator parameters 
fixed. Starting with a IJ = 0.95 distribution with 
current I, and emittance no, the current I 
required to maintain a match with a new emittance II 
can be obtained from the scaling law Eq. (5a) 

T/I, = (rlJn,)3J* . (6) 

Calculating a new lower current distribution produces 
a distribution with the desired smaller emittance n. 
But in the particle tracing simulation we let each 
macroparticle carry a charge corresponding to the 
original current I,. The results are shown for a 
few cases in Table II. 

For the mismatched cases, the radius grows 
quickly then fluctuates with twice the external 
frequency . Because the average beam radius is large, 
the average space charge forces are small so that the 
time to reach a maximum in the radius is about one- 
fourth the undepressed transverse period. It does not 
pay to decrease the beam radius to below its matched 
value because space-charge growth will only increase 
the radius to above its matched value. 

The emittance growth is small so that a lower 
limit to the emittance, if it exists, will be very 
small (remember the beam is already near the space- 
charge limit even before the emittance is reduced). 
Because of the mismatch the phase-space area swept out 
by the beam is large and in the presence of external 
nonlinearities gives an effective emittance growth 
because of filamentation. 

Discrete Gap Simulations 

The above calculations used a continuous accel- 
eration model with harmonic longitudinal restoring 
forces. Another version of HOT was used to determine 
if localizing the longitudinal forces to the gaps 
modifies the results. Whenever a particle crosses a 
gap, it receives an energy increase equal to eE,T 
cos $, where 4 is the rf phase at the time of gap 
crossing. At the time the synchronous particle 
crosses the gap, all particles are given another 
energy change because of the new reference energy. 
Besides making the acceleration and longitudinal 
focusing discrete, this procedure also makes the 
effective longitudinal potential nonlinear. 

In using the nonlinear potential a new problem 
arises when space charge is included because the size 
of the finite potential well is reduced,* To longitu- 
dinally contain the particles it was necessary to 
change the synchronous phase from -30° to -37O (the 
accelerating field was also increased to 1.66 W/m to 
maintain the old acceleration rate). A change in syn- 
chronous phase is much more effective than an increase 
in accelerating field in maintaining a potential well 
in the presence of space charge. The results for the 
discrete gap calculation are shown in Figs. 2 and 3. 
There were 150 gaps in this simulation. Phase damping 
was not decreased bv making the longitudinal forces 
discrete. The transverse emittances increased by 
about 15% (this may be partly numerical). The longi- 
tudinal emittance containing 90% of the particles in- 
creased by about a factor of two. This growth is fil- 
smentation caused by the nonlinear external longitudi- 
nal potential. Such an increase can be reduced by 
matching to the actual nonlinear potential (the ini- 
tial distribution was matched to the harmonic restor- 
ing potential). 

Conclusions 

Most calculations were done assuming harmonic 
oscillator focusing forces and continuous accelera- 
tion. We found that even a beam near the space-charge 
limit was well behaved. Phase damping is still pre- 
sent and emittance growth because of mismatches is not 
noticeable. Nonlinearities and couplings introduced 
solely by space charge apparently have little effect, 
But even in this model, we found that mismatches are 
undesirable because they produce growth in beam 
spatial dimensions. 

With discrete longitudinal forces we found no 
degradation of phase damping compared to the contin- 
uous case. Space-charge limited beams will probably 
have to be contained by using larger magnitudes of 
synchronous phases. Longitudinal emittance growth was 

+- *I thank M. Weiss for pointing out the importance of 
this effect. 



observed owi.ng to filamentation caused by the large 
external nonlinearity. 

These calculations indicate that future studies 
should look at the effects of external nonlinearities 
and couplings in space-charge limited beams. Also, 
other types of mismatches (other kinds of initial dis- 
tributions 1 should be studied. Nonaxisymmetric fea- 
tures such as quadrupole magnets may change some con- 
clusions but a proper study of these features will 
require three-dimensional space-charge calculations. 
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Fig. 2. The transverse and longitudinal phase-space 
projections are shown for the initial distribution 
(a), the final distribution for the continuous 
acceleration and harmonic focusing ca8e (b), and the 
fins1 distrihution for the discrete gap forces csse 

(cl * Units are mm for x and z and mrad for x’ = dx/dct 
and z’ = dz/dct. 
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Fig. 1. The current and beam radius for equilibrium 
distributions with o = 0.67 and n = 2 are shown as a 
function of the space-charge parameter V. The 
transverse emittance value and all accelerator 
parameters are fixed. 

Fig. 3. Tine bunch length is shown as a function ot B 
for both the continuous acceleration and discrete gaps 
cases. 


