
IEEE Transactions on Nuclear Science, Vol. NS-26, NO. 3, June 1979 

IMPROVED ANALYTIC STARTING POINTS FOR BEAM MATCHING 
PROBLEMS TO BE SOLVED ON DIGITAL COMPUTERS* 

Philip F. Meads, Jr.// 

ABSTRACT 

Digital computer codes using methods of least 
1 squares and linear programming’ can solve extraor- 

dinarily complicated beam matching problems involving 
many simultaneous parameters provided that they are 
provided with the starting points “close” to the de- 
sired solution. Estimates based on zero-emittance 
beams frequently are inadequate for this prupose. We 
here develop some thin lens formulae for finite- 
emittance beams to provide improved initial values to 
the variable parameters. 

INTRODUCTION 

The design of a beam transport system usually 
requires the specification of waists and beam widths 
at several locations. Unless care is taken, such 
specifications can be contradictory, resulting in the 
failure of the matching computer code to locate a 
solution. We here introduce a simple method to deter- 
mine feasible beam profiles and the lens strengths and 
locations to achieve them. 

ENVELOPE OPTICS 

As is customary, we treat the beam as lying within 
an ellipse of constant area within the two dimensional 
phase space of x and x’. Where this ellipse is sym- 
metrical with respect to the axes (“upright”), we have 
a waist for which the maximum displacement is r, and 
the maximum slope is x’. Let M be the 2X2 transfer 
matrix that provides the transformation of the beam 
envelope from point 1 to point 2: 
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the divergence of the envelope, differs 
the maximum slope. This is the same matrix 

that transforms an arbitrary column vector written as 

(x 2 2 , x’ , xx’) ; it is also the matrix that transforms 
the Twiss parameters ( f,y,-CL) over the same interval 

as shown by Gourian. 3 

Virtual Waists 

At any point, the envelope of the beam may be 
treated as having drifted from a waist through a drift 

length d to the point of observation.’ In most cases 
this waist does not really exist due to the imposition 
of some optical element; we call such a waist a virtual 
waist. 

We can think of the beam as originating at a waist 
of half width x . If M is the transfer matrix from this 
origin to the pgint of observation, then from Eq. 1, we 
see the following: 
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The slope of the envelope, (;;>I, is given by 

X(T) ’ -2 =M M x 11 21 0 +M M -72 
12 22 x ’ (4) 0 

This envelope apEears to issue from a virtual waist of 
half width xw = xoc/T (5) 

located upstream at a distance d, where 

d=: (;)’ / (F)2 (6) 

Waist-to Waist Matching 

In terms of the Twiss parameters, the most general 
transformation between a waist at point 1 and a waist 
at point 2 is 

fPl J cos $ J-J-i$ sin m\ M= \-sin+/- $ 2 ’ Yq-C cos $5 I (7) 

where 4 is the (arbitrary) phase advance. 
5 

Given that there exists a waist at point 1, tllr 
condition that there exist a waist at point 2 is: 

I2 = -M12M22/(MllM21) . (8) 

Waist-to-Waist Transfer by a- Single Thin Lens -- 

Let the beam system between point 1 and point 2 
comprise a drift space of length a, a thin lens of 
focal length f, and a drift space of length b. We also 
introduce the lengths a’ and b’, measured from the 
focal points: a’ = a-f; b’ = b-f. 

Applying Eq. 7 and Eq. 8 to this configuration, we 
find: 

t$/ t = b’/a’ , (9) 

and 
5% = f2 - a’b’. (10) 

The right hand side of Eq, 10, when set to zero, is 
recognized as the Newton image condition for zero- 
emittance optics. For the typical situation where the 
amplitude functions /? are comparable in magnitude to 
the focal lengths and element spacings, this form 
shows clearly the difference between the conditions for 
waist-to-waist matching and those for providing a 
simple image. 

We also observe that the ratio of the squares of 
the waist sizes is given by a length ratio whereas in 
zero-emittance optics, it is the first power -the mag- 
nification- that is given by a similar ratio. 

We can express the focal length in terms of the 
two drift distances and the amplitude$ at the lens 
using Eq. 9 and an expression from the next section: 

f = (%a-\b)/(s-5) , (11) 

where $ = g2 i&z-z- (12) 

and $ = @2 td f3/2)‘- b2 . (13) 

The choice of sign of the radicals refers to the 
possibility of two different waists as is shown below. 

Before leaving this topic, we should mention that 
either or both of the drift distances a and b may be 
negative as may be the focal length. 
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Waist Locus 

A GRAPHICAL METHOD two reference points, where the amplitudes are speci- 
fied, is maximized, Moreover, if the two amplitudes 
are the same, we have 

e = z =e/2 (16) 
It is well known that the envelope in a field-free 0 

region adjacent to a waist is a hyperbola (Eq, 2) that which is the relationship for a periodic channel where 

is asymptotic to the trajectories of maxjmum slope, minimum apertures are required for a given interelement 

If 8, is the amplitude function at the waist then the spacing 22, 

amplitude function Bat a point d on either side of the Minimum Width 
waist is 

B= s+d*if3 (14) 
If the problem is to minimize the beam width at 

. 
0 the second reference point, it is easy to show that 

This equation may be rewritten to yield the locus z 
and amplitude Bo given that the beam at the reference 

such a condition is achieved when a waist precedes the 
second reference point as shown in Fig, 3, Although as 

point z=O (which might be a lens, a target, or some 
purely arbitrary point) has an amplitude p : 

pointed out in Banford’, the excessive divergence of 
the beam from such a point makes this configuration 

($- 8/2)2 f z* = ( 8/2)2 . (15) 
less desireable than one where there is a waist at the 
second point. 

This locus, which is seen to be a circle of radius a/2, 
centered at (0, 8’2) is shown in Fig, 1. 

Fig. 1. Locus of B. 

Fig. 3, Minimum Beam Width 

Amplitude Function Locus --- 

If the reference point is in a field-free region Consider the family of circles of varying radii 
then the waist may be either upstream or downstream of that are all tangent to the z axis and that all pass 
the point, There is a maximum distance IzI = F1/2 through a common point. The curve tangent to all of 
beyond which there may not be a waist, For other lo- these circles is the locus of Eq, 14. 

cations, there are two waists that may be attained, 
If the reference point is taken to be at a thin lens, 
then it is possible for a waist to be on both sides 
of the point. The required focal length in this case 
is given by Eq. 11, 

Two Reference Points with a Common Waist ------ 

Let us add a second point where we know the am- 
plitude to be fi2, Let us use 6, for the amplitude of 

the first reference point, We may in general have 
the loci shown in Fig, 2 where there are two nossible 
amplitudes for the intervening waist : 

B 

lclIz!l 
-k! 

B 0 

Fig, 2. Common Waist 

Fig, 4. Amelitude Function Locus 

Diverging Lens 

If we now assume the reference point to be a di- 
verging lens, we can specify two waist locations and 
consider families of circles of the type in Fig. 4. 
for each point, The nearer point is taken to be a 
virtual waist, and circles through this point apply to 
the envelope upstream of the lens. The other point 
corresponds to the real waist produced by the lens, 
and circles through that point apply to the envelope 
downstream of the lens, Such a locus is shown in 
Fig. 5, 

Economy Sys tern 

If the two loci in Fig, 2 are tangent then we 
have the situation where the drift distance between the 
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aist 

Lvirtual waist 

Fig. 5. Diverging Lens 

Two Lens Variable Waist - 

Starting with a known source waist, it is possi- 
ble with two lenses to produce a variable-size waist 
as shown in Fig. 6. However, the spacing between the 
lenses must not be much larger than 61 if a 
reasonable range of sizes is to be available. For 
each possible output waist, the position of all waists 
and the amplitude at each lens is taken from the graph. 
Eq. 11 is then used to provide the two focal lengths. 

For a given system with given apertures, the 
method provides a quick determination of the range of 
possible waist sizes. 

lens 1 
I I 

lens 2 variable 

Fig. 6. Variable Waist 

Complex System 

We can next consider a transport system comprising 

of several lenses as sketched in Fig. 7 where two fo- 
cusing lens and two defocusing lenses are used to 

transport a beam from one waist to another waist. Be- 
tween each pair of lenses, we locate a real or virtual 
waist. Each waist, except the first and the last, lies 
on exactly two circles. 

We start by drawing for each lens a circle whose 
diameter is the amplitude at that lens. The first and 
last must, of course, pass through the waists at the 
ends of the system at the appropriate amplitudes. The 
positions of the other waists, and if permitted, the 
positions of the lenses, may be adjusted until each 
circle properly meets its neighbor. 

Eq. 11 is used to calculate the focal length for 
each lens given the locations of the (virtual) waists 
and the amplitude function at the lens. This, of 
course, must be done simultaneously for both the later- 
al and the vertical planes. However excellent starting 
conditions for a computer match may be obtained by per- 
forming this exercise with but limited accuracy. The 
main point of this exercise is to provide the computer 
code with a feasible problem. 

Fig. 7. Complex Systems 
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