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A SECOND-ORDER MAGNETIC OPTICAL ACHROMAT* 

K. L. Brown+ 

Abstract 

A design procedure is given for the elimination of 
all of the second-order transverse geometric and chro- 
matic aberrations in a particular class of static- 
magnetic transport systems for charged-particle beams. 1 

Introduction 

There are numerous applications for magnetic 
optical systems that transport beams of charged parti- 
cles from one location to another such that the trans- 
verse phase-space configuration of the beam at the 
final position is a faithful reproduction of the beam 
at the point of origin, The precision to which this 
may be achieved depends upon the magnitude of the 
phase-space volume to be transmitted and upon the 
optical distortions (aberrations) introduced by the 
intervening transport system. It is the purpose of 
this paper to describe a relatively simple method of 
devising a class of beam transport systems which 
approach this ideal objective by eliminating all of the 
second-order geometric and chromatic aberrations at the 
end point of the system. We restrict the discussion to 
systems where the transverse phase-space volume is 
conserved and where space-charge effects may be 
neglected, 

Basic Design Concepts 

The following of a charged particle trajectory 
through a series of ma netic 
matrix multiplication. y3 9 

lenses may be expressed by 
At any specified position in 

the system the arbitrary trajectory is represented by 
a vector X, whose components are the positions, angles, 
and momentum deviations of the arbitrary ray relative 
to some specified central trajectory. In this report 
we use the notation of the TRANSPORT program,3 where 
the components of the vector X are X1=x, X2=x’, 
X3=y, X4=y’, X5= 11, and X6=dp/p. As we are con- 
cerned with only the transverse coordinates and the 
momentum of the particles, the longitudinal component 
X5 will be ignored for the remainder of the report. 

The linear properties of each magnetic lens or a 
sequence of lenses are represented by a square matrix 
R, which describes the action of the magnet(s) on the 
particle coordinates as follows: 

x1 = Rx0 (1) 

where X0 is the initial coordinate vector and XI is the 
final coordinate vector of the particle under consi- 
deration. This linear matrix formalism is conveniently 
extended to include second-order terms (aberrations) by 
the addition of a matrix T.. as follows: 

1Jk 

X i,l = C Rij ‘.J 0 ’ CTijk ‘j 0 ‘k 0 (*I , , , 

The geometric terms as those for which i,j or k are 
equal to 1,2,3 or 4; and the chromatic terms as those 
for which j or k equal 6. 
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We define a second-order achromat as any system 
for which all Rij and all Tijk vanish for i= 1,2,3 or 4 
and j or k equals 6, i.e., any system for which all of 
the first- and second-order transverse chromatic terms 
vanish. The particular solution we present here is 
further restricted to the special case where the trans- 
form matrix, from the beginning to the end of the 
system, is the identity matrix for both the x and y 
transverse planes. 

Elimination of the Second-Order Geometric Aberrations 

Consider a static magnetic-optical beam transport 
system composed of a series of N identical unit cells 
where each unit cell contains dipole and quadrupole 
magnetic field components. It is possible to choose 
the dipole and quadrupole components for each cell such 
that the linear transfer matrix R, representing the 
first-order transverse optics of the total system, is 
equal to the identity matrix. This corresponds to a 
2n phase shift between the beginning and the end of the 
transport system. It then follows irom the theory of 
second-order beam-transport optics, that the resulting 
system has vanishing second-order transverse geometric 
aberrations provided that the number of unit cells N, 
comprising the total system, does not equal one or 
three. Furthermore, it can be shown that if N=4 or 
more, the addition of eight sextupole components to the 
system, four for the x-plane and four for the y-plane, 
is sufficient to eliminate all of the second-order 
chromatic aberrations and at the same time still have 
vanishing second-order geometric aberrations. 

The proof that all second-order geometric aberra- 
tions will vanish under these circumstances is seen by 
writing the integrals used to calculate these terms in 
a form involving the phase shift $ and the multipole 
strengths Kn($>. n=O is the dipole term, n= 1 is the 
quadrupole term, and n= 2 is the sextupole term. For 
a system of N repetitive unit cells making up a total 
phase shift of $=2~(, the second-order geometric terms 
in Tijk are generated bY integrals of the form: 

2n 

/ 
K,(Q) cost+ sinm$ d$ (3) 

where 

x=y=o 

and (etm)=3 for the dipole and sextupole contributions 
(see Ref. 4 for a derivation of Kn). The quadrupole 
components do not contribute to the second-order 
geometric terms but the dipole and sextupole components 
do. Transforming this integral to the complex plane, 
it assumes the form 

2n 

J 
K,(q) [ei’ t eqii]’ l [eiQ - ewiJllm dj, (4) 

Expanding and ignoring the numerical coefficients, 
the final result may be expressed as a sum of terms 
containing two basic integral forms: i.e., 

2n 

J K,($) ekiJi dJ, (5) 
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2n 

/ 
K,($) e 

_t3i$l 
d$ (6) 

0 

Evaluating these integrals for a repetitive unit 
cell structure, the dipole or sextupole components may 
each be viewed as “vector additions in the complex 
plane, ” where Kn($) is the amplitude of the vector and 
$ is its phase for Eq. (5) and 314~ is the phase of the 
vector for Eq. (6). Both integrals vanish when N, the 
number of unit cells comprising a 2n betatron phase 
shift, does not equal one or three. N= 1 is excluded 
because there is no possibility for a vector cancella- 
tion, and N = 3 is excluded because all of the vector 
components in Eq. (6) add constructively, Both inte- 
grals vanish fur any other integer value of N. 

Elimination of the Second-Order Chromatic Aberrations ~.-~ 

Sextupoles may be used to eliminate second-order 
chromatic aberrations if dipole components are present 
in the lattice to provide momentum dispersion and hence 
coupling to the off-momentum trajectories. At least 
four sextupole components are needed in each trans- 
verse plane to permit coupling to all of the trajec- 
tories and at the same time allow the second-order 
geometric aberrations to vanish. 

One such solution is a unity transform system com- 
posed of four or more identical unit cells. TWO 

sextupole components are introduced into each unit 
cell, one for the x-plane and one for the y-plane. 
The x-plane sextupoles are positioned where the x-plane 
monoenergetic beam envelope is large compared to the 
y-plane beam envelope. Similarly the y-plane sextupole 
components are positioned at a location where the 
y-plane beam envelope is large compared to the x-plane 
envelope. This maximizes the relative coupling coeffi- 
cients to the chromatic terms in each transverse plane 
and thereby minimizes the strength of the sextupole 
components required for the correction process. These 
sextupole components may be thought of as providing 
additional “quadrupole-like” gradient focusing ele- 
ments for the off-momentum trajectories. The strengths 
of the two sextupole components are adjusted to make 
the chromatic terms vanish in both the x and y planes. 
This consists of solving two simultaneous linear equa- 
tions. The remarkable result is that all of the 
second-order chrclmatic terms vanish simultaneously with 
the introduction of only the two variables, the x-plane 
and y-plane sextupole strengths that are introduced 
into each unit cell. 

Other sextupole patterns are also permissible, all 
of which have the common characteristic that at least 
four appropriately positioned sextupole components are 
needed in each transverse plane in order to couple to 
all of the off-momentum trajectories and to have 
vanishing second-order geometric aberrations at the 
end point. The eight sextupoles are required to 
achieve a unity transform matrix valid to second-order 
in the optics. 

High Order Optical Aberrations 

Aberrations of higher than second order should 
also be considered when formulating a particular solu- 
tion for an achromat. They arise from two primary 
sources: (a) those which are inherent in the basic 
design of the first-order lattice, and (b) those which 
arise from the introduction of the sextupole correcting 
elements. In the discussions above it has been 
assumed that the total length of the achromat corres- 
ponds to a 2n phase shift. But the results quoted are 
also valid for systems whose length is a multiple of a 

7.n phase shift. Under these circumstances the sextu- 
pole correcting elements may be distributed over a 
longer distance, measured In units of phase shift. A 
particularly interesting example is when the number of 
first-order unit cells N making up each 2n phase shift 
section is four or more and is an even integer. The 
sextupole components may then be introduced in pairs, 
the elements of each pair being identical and separated 
by a phase shift of II in both transverse planes. The 
transformation matrix between them is then equal to 
minus the identity matrix. If under these circumstances 
the two sextupoles are of equal strength and of the 
same polarity, then for all monoenergetic trajectories, 
corresponding to the momentum of the central trajec- 
tory, the effect of the first sextupole on the trajec- 
tories at the end of the system is uniquely cancelled 
by the second sextupole. This cancellation Is valid to 
all orders in the monoenergetic geometric optics to the 
extent that the phase shift over the length of the 
sextupole is negligible. Using this principle, it is 
then possible to formulate beam transport systems which 
have no second- or higher-order geometric aberrations 
introduced by the sextupole correcting elements. 

Some Examples of Second-Order Achromats 

Example 1 

One typical example of an achromat is a separated 
function FODO array of alternating strong-focusing 
quadrupoles (Q) with interspersed dipoles (B), sextu- 
poles (S), and drift spaces. An acceptable unit cell 
is the following symmetric array of magnetic elements: 

O(x) S(x) B(x) S(y) Q(y)Q(y) S(Y) B(x) S(x) Q(x) 

Q(x) is a quadrupole 
defocusing in the y-plane. 

Q(y) is a quadrupole 
defocusing in the x-plane. 

focusing in the x-plane and 

focusing in the y-plane and 

S(x) is a sextupole with strong coup1 
x-plane and weak coupling to the y-plane. 

ing to the 

S(y) is a sextupole with strong coupling to the 
y-plane and weak coupling to the x-plane. 

the 
B(x) is 

x-plane. 
a dipole whose magnetic midplane lies in 

The optical equivalent of the above FODO array is shown 
in Fig. 1. 

I---- unit ce” ----I 
Do n 010 n o(j xplone 

t---t-~--l 
[o n 000 n 01 Y P’o”e 

2-n 354lAl 

Fig. 1. A typical separated function 
unit cell for a second-order achromat. 
The lenses represent quadrupoles, the 
triangles dipoles, and the hexagons 
sextupoles. 
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An assembly of four or more such unit cells ad- 
justed to have a total phase shift of 2n constitutes a 
second-order achromat when the sextupole components are 
adjusted to make the second-order chromatic aberrations 
vanish. 

As an alternative, the sextupoles may be intro- 
duced into 
follows: 

the unit cell in an asymmetric manner as 

Q(x) S(x) B(x) Q(Y) S(y) B(x) 

Example 2 

A unit cell may also be generated 
bined function magnet as shown in Fig. 

by using a com- 

Fig. 2. An example of a combined function unit 
cell for a second-order achromat, 

The strength of the dipole component is equal to the 
bend ing angle a . The dipole provides dispersion and 
first-order focusing in the radial plane. A quadrupole 
component, focusing in the non-bend plane and defo- 
cusing in the bend plane, is introduced via ,the ro- 
tated input face of the magnet; and two sextupole com- 
ponents are introduced via the curved surfaces, Rl and 

R2’ on the entrance and exit faces of the magnet. The 
unit cell then consists of the combined function magnet 
and a drift space preceeding and following it. The 
total achromat is composed of at least four such unit 
cells adjusteNd to a total phase shift of 2n. 

Example 3 

An example of an extended 6n phase-shift achromat, 
having non-interlaced sextupole pairs, is illustrated 
in Fig. 3. 

SXl 

m-e 

sine-like function 
cosine-like function 

x plow 

SYI 
L I I I I I 1 

0 17 2n 3n 4r !j~ 6~ 
PHASE SHIFT 

y plone 

3541*3 

Fig. 3. A typical la ttice arrangement for 
an extended, 6r( phase shift, second-order 
achromat using non-interlaced sextupole 
pairs. 
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The phase shift in each transverse plane is chosen to 
be the same. The correcting sextupoles are introduced 
in pairs with the individual members of each pair being 
identical and separated by a phase shift of IT. The 
respective pairs, labeled Sxl, Sx2, Syl, and Sy2 are 
not interlaced and therefore do not introduce second- 
or higher-order geometric distortions. The distance of 
separation is chosen such that the strengths of Sxl and 
Sx2 are the same as are Syl and Sy2. 

The 6a phase shift achromat is most applicable to 
those systems where it is desirable to avoid higher 
order geometric aberrations caused by the interlacing 
of the sextupoles. An example of this is a chromatic 
correction system for large storage rings, discussed 
elsewhere in this conference. 6 Another example is in 
the design of secondary charged particle beams where 
residual tails in the transverse spatial distribution 
at the end point is important. 

Summary 

Several examples of second-order achromats have 
been studied using the computer programs TRANSPORT3 and 
TURTLE5. Other studies have been made using the achro- 
mat principle to make chromaticity corrections for 
large storage ringse6 In addition, secondary beams 
have been designed based on the achromat principle 
which have significant improvement in the transmitted 
phase-space volume.7 From the study of these few 
examples it is evident that there are many potential 
applications for the achromat concept. 
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