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THE LINEAR ACCELERATOR STRUCTURES WITH SPACE-UNIFORM QUADRUPOLE FOCUSING 
I.M.Kapchinskij and N.V,Lazarev 

Introduct ion 

The linear acceleratora with space-uniform 
quadrupole focusing do not require high-vol- 
tage injector and allow to have high capture 
efficiency without any preliminary bunching, 
Wide capture region and large acceptance 
allow to get high values of current limits, 
The units with space-uniform focusing are 
very effective as aninitial part of high-cur- 
rent linear accelerators for medium and high 
energies, 

Description of operation 
In linear accelerators with drift tubes 

the quadrupole focusing system has the stron- 
gly marked space periodicity: either the po- 
les polarity of quadrupole lenses or the geo- 
metry of poles alternates along the axis, But 
with time alternating voltage there may be 
used the quadrupole system of the focusing 
electrodes which is uniform along the accele- 
rator axis. Such system is shown in Fig,l. 
The magnitude &=2Ua is the voltage amplitude 
between two adjacent electrodes, As the elec- 
trodes are supplied with HF voltage fll,cosa 6, 
so the particles are sequentially exposed to 
fields with alternating gradient signs while 
they are travelling along the axis, In the 
space-uniform system this effect leads to the 
quadrupole focusing. 

If the distance between opposite electrodes 
of the same polarity in four-wire line varies 
periodically along the axis, there appears a 
longitudinal accelerating component of the ILF 
field. The space period of the variation must 
be equal to the synchronous particle path 
during a period of the HF. The phases of dis- 
tance changings in the mutually perpendicular 
planes have a half-period shift. The electric 
field potential at the axis under these con- 
ditions is modulated with period fh , that 
create resonant accelerating effect. Fig.2 
shows round electrodes of alternating diameter 
with conical transitions; there are given a 
section of electrodes by the plane passing 
through the longitudinal axis and three cross 
sections with the co-ordinates z= -t lx 
dP 

; 0; 

quant i.Ey 
The longitudinal axis shows variable 

k, z where k, - is the wave number 
of the acceleiating wave: k,=2~/kX . The func- 
tion defining the electrodes diameter is odd 
relatively to the section with exact quadru- 
pole symmetry. The sections of the modulated 
four-wire line consisting of the electrodes 
of “crank-shaft” type are shown in F&,3, 

HP resonators 
The HF supply of the four-wire line may be 

fulfilled by a resonator with longitudinal 
magnetic field. Fig.4 shows possible types of 
resonators: the four-chamber resonator1 and 
double H-resonator 2 . The H-resonator, due to 
preposition of its inventor V,A,Tepljakov, 
one calls a construction, the main resonating 
element of which is a cylinder with longitu- 
dinal gap along its wall; the electric field 
is mainly concentrated in the gap. 
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In Fig.4 are shown the directions of longitu- 
dinal magnetic field and electric lines of 
force in the region of interaction with the 
beam. The shown sections correspond to the 
planes with exact quadrupole symmetry, The 
magnetic fluxes connection takes place at 
the bottoms of the resonator. The intercham- 
ber partitions do not reach to bottoms. The 
first realized units of the accelerator with 
space-uniform focusing were made as double 
H-resonatorg, At the first stage of construc- 
tion it seemed to be technologically simpler 
and more reliable then the four-chamber reso- 
nator, Nevertheless the four-chamber resona- 
tor have some advantages in comparison with 
the double H-resonator, The symmetry of four- 
chamber resonator corresponds to the quadru- 
pole symmetry of electric field in the region 
of interaction with the beam. This simplifies 
the adjustment. The four-chamber resonator is 
a little less in dimensions and has smaller 
HF losses than the double H-resonator. In 
conclusion in four-chamber resonator it is 
much simpler to vary the shape of the modu- 
lated electrodes, The technological difficul- 
ties of the four-chamber resonator may be 
successfully solved. 

Let us define the distributed capacitance 
per unit of the four-wire quadrupole line 
by the equality d’J 

YE=- 
‘&r - 

where 3 
cw- 

- the full conduction current coming 
up to one electrode. Let us neglect the mag- 
netic field in the region of the interaction 
with beam. Then the radius I7 of the infini- 
tely long four-chamber resonator with thin 
partitions will be defined by the equation 

- a0 (W t YE0 nC,ka a, 04 
& 04 t -f$ ka 4(ka) ; (1) 

Q 
a- interaction region radius; k= .?rc/h, The 

value of the magnetic field in each chamber 
only slightly depends on co-ordinates. Assu- 
ming the value of the magnetic field in the 
chamber to be constant and a<</? one can get 
such approximate dependence betwien the wave- 
length of the quadrupole mode of oscillation 
and the resonator radius 

7 
J=cr R ,/ fl”ci (2) 

v 2&o 
For the double H-resonator with the radius of 
the resonating cylinder Ri and the radius of 
the shield cylinder R2 under the same appro- 
ximat ion 

A== ZR, J$p[i-e($y] ’ (3) 

The expressions (2,3) are the more accurate 
the bigger the distributed capacitance per 
unit. The resistance losses of HF power per 
unit length of the resonator may be evaluated 
by the expression 

1 a- 7 

p= fu:+‘$(dLG)3 Wt/m, (4) 

where 6 - the specific conductivity of reso- 
nator walls (ohm-’ rnsf > . 
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For double H-resonator 
energy increase. The value 

2 (-g(l+2 $, 
+jz[~-e~~q+ Ii- a (ul)‘]” j 

i 

for four-chamber resonator 

f 
Y+ fc 

“2\IisT‘. 

The evaluations show that the dimensions of 
the resonators and resistance losses are 
small; so under C, = 40 pF/m the cavity radi- 
us is R+‘x/lO. The calculated value of resis- 
tance losses in four-chamber resonator under 
2~ 4m and UL= 300 kV are approximately 
64 kWt/m; but as it is known from experience 
with Alvarez resonator, the real resistance 
losses may be 2-3 times more than calculated, 

Accelerating and focusing electrodes 
Let us consider the four-wire quadrupole 

line. At quasi-stationary approximation the 
electric potential in the region of the axis 
where the beam interacts with the field may 
be presented as . 

The function of the amplitude distribution in 
common case is 

u&/~,2)=- 

The function 

.j3zjq)= 2 Aos ~‘(2s+1)ca5 2 @s+ij + (6) 
s-0 

gives the law of potential distF?tion in 
the section with co-ordinates =Jn: 
(J= 0,1,2,... >, where the field’has accurate 
quadrupole symmetry. The coefficients F& 
of the harmonics of the space modulation of 
the potential are defined by the series 

j&q)= f5 A,,1ys[(2h-f)krz]C~SY5~ (7) s-0 
Iqs are the modified Bessel function. The 

symmetry of the field is taken into account 
in expressions (5 - 7). The first term of the 
series (7) describes the axial symmetrical 
component of the potential; the rest of the 
series gives the components with the symmet- 
ries of higher order, 

Rear of the axis the electric field is of 
the R: mode wave. The portions of particle 
energy are being gained along each l/2*1% of 
path, Let y to be the field phase at the 
moment when the particle is in the plane with 
exact uadrupole symmetry. Then with the 
first x egree of approximation for any parti0l.e 
ut=i@ + y , Let us assume that during acce- 
lerat ion period the transverse co-ordinates 
of particles remain approximately constant, 
The increase of the particle energy along the 
acceleration period L E: $ PI in this case is 
defined by expression , 

&I= pdL,E: (w) bs’p. 
One can see that only the first harmonic of 
the space modulation of potential gives the 

-- 
CT= @to)= $A,o 

is the analogue of -the transit time factor of 
the particle moving along the axis and defines 
the acceleration efficiency. For the particle 
movinR along the axis 

;w= &Tcmcp< 
The transversal oscillations of the parti- 

cles in nonrelativistic approximation are 
described by the equation 

d2X dk a%cos(jJt 
c ;j-s”=2m, ax 

+ 

1 

+E 32 Sin(2n-f)kl-rcosCkll+~~ J. 
Assumin?‘that the half of the period of the 
space electrode modulation is much shorter 
than the transversal oscillations wavelength, 
it is possible to change the second term in 
square brackets by the value averaged for the 
half of the period L. Then the last equation 
may be simplified 

-4 

d2x ek af,cosot- 2 ~$!p(pJ 
s== ax c (IO) 

The main quadrupole focusing effect is defined 
by the quadratic term of the series (6). The 
other components give rise to the beginning 
of the various nonlinear effects. Let us con- 
fine ourselves with the linear approximation 
to the quadrupole component of the electric 
field assuming 

&(z,+= ae G32~s~+* (11) 

Later on the value d we will regard as mini- 
mum distance from the axis to the electrode; 
this distance define the aperture of the 
channel and accodingly the acceptance of the 
channel. The coefficient aa depends upon the 
depth of modulation of the electrodes. Aa it 
follows from the equations (8,lO) the accele- 
ration and defocusing of the particles for a 
first approximation depend only on the func- 
tion .I$ (z,+). The paraxial particles are for- 
ced mainly by the cylindrically symmetrical 
components of the function P, ; so we can 
assume 

(12) 

The modified Bessel function of the zero 
order with small values of the argument does 
not differ much from unity. Usually it is 
possible to assume I&,z)=l, neglecting thus 
the longitudinal movement dependence on the 
transversal oscillations, But the accelerator 
with space-uniform focusing allows to use the 
particles injection with rather low energy, 
The wave number &,E 2fl/@ under these conditions 

I may turned out not very small and the depen- 
dence between longitudinal and transverse os- 
cillations will play its part% 

The accurate calculation of the coeffici- 
ents T and x requires the numerical solu- 
tion of the electrodynamics equations for the 
electrodea of concrete shape, But for these 
coefficients it is easy to get approximate 
expressions, suitable to choose the main para- 
meters of the accelerator, 

The pieces of electrodes with constant 
section in Fig,2,3 correspond to the drift 
tubes and transitions between the adjacent 
pieces of constant section to the accelera- 
ting gaps, The exact solution of the 
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boundary-value problem for the electrodes of 
constant section may be achieved if the elec- 
trodes sections are approximated by the field 
equipotentials of four linear wires with qua- 
drupole symmetry of charge, Let us define the 
depth of the electrodes modulation m as a 
ratio of the maximum distance from the axis 
to the electrode to the minimum distance, The 
equipotentials coinciding with the electrodes 
surface are defined by the three parameters: 
the aperture radius & the depth of modula- 
tion m and the formfacior V The curvature 
radiua of the electrodes at tie nearest to 
the axis points are correspondingly (Fig,2,3) 

R,= a 
1+8ShV 

; I$= ““2 
I+ 8RShw (13) 

f+m2 itm2 

q+. ?!g9?% 
m2tl I 

In contrast to the case (16) in the case (17) 
the acceleration efficiency has weak depen- 
dance of the parameter v and the focusing 
quadrupole field is more linear. Calculation 
of the boundary effect in the last case gives 
the approximate equality aa , 

i 

whe!:; ” 

&v w-, VI -s;nIC~) d’~ 

0 la2 

) 
V RTH d+$ 

=: R dw . The condition 
Ck = const ( V = const) must be met along 

the whole resonator. Under the changing modu- 
lation depth this condition defines, with ac- 
cordance to the equalities (131, the ratios 
“h, and $&. In the parts of the accelerator 

where u is the distance from the axis to the with constant modulation depth the parameter 
electrode at the plane XOZ. Under V,Co,l the 
sectiona of the electrodes are near hyperbo- 

V may b;+;yosed under the condition 

lic and under V$ 0.25 are near circles with sh2V= x ; it gives RX= Ry= * 
. . the radll R,, RY, The distributed capacitance 

of the four-wire quadrupole line is C, = $$- 
Beam dynamics 

Under A<< 11 one can assume the longitudinal 
It is more comfortable to study the longi- 

component of the field at the channel axis to tudinal oscillations of the particles in the 

be equal zero at the electrodes pieces with 
device with space-uniform focusing in canoni- 

constant section. Then the expression for the tally conjugated variables (5~2-2~~ p=c’-VS, 

acceleration efficiency may be obtained The phase difference of the equilibrium and 

T=$. ?$?&,g ) 
nonequilibrium particles is $J= - k, 4. The 

(14) 
replacement of the equations in finite diffe- 
rences by differential equations does not add 

where d= B/p; p= J&w ; appreciable error in spite of the low injec- 
tion energy as it is advantageous to choose 

$ is the transition length between the the partial increase of the energy (9) at the 
pieces of electrodes with constant section. beginning of the accelerator rather small, as 

The efficiency of focusing in modulated it will be shown later, The longitudinal OB- 

four-wire line consisting of interchanging cillations equations may be drawn from the 
pieces of constant section electrodes are equality (8) directly, The Hamiltonian des- 
approximately defined by the expression cribing the longitudinal motion of any par- 

4 SW m2+ 1 title relatively the synchronous one is 

-g&i& v* J& 2 rn%4L 2v+ I 1 z elcLrCk,,co,,-T,~k,z~5i"(~~5-Qs] 

where CI,= A Cm’- G/J- 

(15) H@p)=;i;p + rcn, (18) 
, In a uniform The equation of the small longitudinal oscil- 

line RI =I and T =O; the acceleration is absent lation is 
but the focusing effect is maximum. With 
growth of the modulation depth the efficiency 
of acceleration is increasing, but the effi- 
ciency of focusing is decreasing, 

3 +dl,w~f = &[L(~~+ -4 , (19) 
1 

From the expressions (13) it follows that 
under where 

r 

n2= 
1+h12 ShVP 8m 

~2&TsislWl/rcm.lr,2 

(16) The particle which is moving along the acce- 

we have RX 7R9 ; under m< 3/2 the expression lerator axis performs small longitudinal os- 

(16) roughly represents the cylindrical elec- 
cillationa with frequency R . Let now the 

trodes with conic turnings (Fig.2); but it is 
particle to have finite amplitude of trans- 
vers oscillations. The averaged motion of 

nevertheless highly rough as under this this particle may be presented as %= !?cosaz*. 
approximation the unequality A+ R, <ma + RY From the equation (19) it follows that the 
always takes place, rather strong coupling of transversal and 

If the unequality longitudinal oscillations gives rise to the 

shV< l+m2 
J- 

periodical modulation of the small longitudi- 
8n (17) nal oscillation frequency and to appearance 

of an external force. Let us at first consi- 
is true, then R,<RJ. This case corresponds der the equation (19) without its lefthand 
to the electrodes of the “crankshaft” type; part. The coefficient attached to f is an 
the line electrodes radii are approximately even periodical function of time with freq- 
proportional to the distances from the elec- uency 2~3 and may be represented as a Fourier 
trodes to the axis (Fig.3). In the case (17) series 
usually is p41, so the expression (14) may 
be simplified: 
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The coefficients of the series are decreasing 
fast and this allows to confine ourselves 
with Mathieu equation. The expressions 

1) (+$> z,‘(., + r: pyy 
2) ($&yy)- r:(y) 

correspond to the two first stability regions 
of the Mathieu equation solution. The first 
condition will be completed for all possible 
amplitudes of the transversal oscillations, 
if it is completed for the maximum amplitude, 
The second condition is true if it is correct 
for the particle moving along the axis. Let 
us assume the maximum amplitude of the trans- 
versal oscillations to be equal to the aper- 
ture radius of the channel R. Then the para- 
metric stability criterion may come to one of 
two expressions 

gjy(!$y+J;jk_$)i (z&F* 

It is possible to neglect the frequency modu- 
lation outside of parametric resonance regi- 
ons,The equation of the small longitudinal 
oscillations under these simplifications is 

9,n,# R I, (‘$$-). This condition for any 
possible transversal amplitude leads to one 
of inequalities: $52 or $ ~Z/L&) 
Then the terms of simultaneous absence of the 
external and parametric resonances are 

1 $<-- 
2 

IO&9 j Gqj@ -0% %2 (20) 

The frequeKcies ratio R/n% corresponding to 
the stable longitudinal oscillations must be 
in one of three regions confined by the 
expressions (20). Usually one can succeed in 
satisfying to the first of these expressions. 

The parametric coupling may lead to the 
resonant rise of the longitudinal oscillations 
not only in the accelerator with space-uni- 
form focusing systems, but in any other acce- 
lerating system allowing the low injection 
energy, in phase variable focusing system for 
example. The conditions of the longitudinal 
oscillations stability (20) are correct to 
all the systems, where it is necessary to 
take into account the degrees of freedom 
coupling, 

The Hamiltonian of the longitudinal oscil- 
lations for particle with the amplitude of 
the transversal oscillations R may be repre- 
sented outside of the resonant regions as 

H&,P)=$+$[ @29g-~$&&W TJ, 

The small longitudinal oscillations frequency 
As the small longitudinal 

depends on R , the os- 
cillations of particle groups with different 
amplitudea of the traneversal oscillations 

are noncoherent. The two effects - the nonli- 
nearity of the self-focusing forces and the 
longitudinal oscillations dependence on the 
transversal ones lead to a relatively fast 
filling of effective phase volume on the lon- 
gitudinal co-ordinates plane with the repre- 
senting points of the beam, which had at first 
the zero volume, 

The center and the saddle co-ordinates may 
be defined from the equation 

cd9 (‘4s+ 44 = A/?! PG) 
For the center co-ordinate q0 we have 

4) b 1 = - 
0 $(I&) 1 

GQ y36 

The center co-ordinate remains a small value 
for particles with any possible amplitude of 
the transversal. oscillations, Really the value 
of the equilibrium phase at the injection in 
the accelerator with the space-uniform focu- 
sing is usually chosen near to 90* and 
Iotgq,) (< 1; later on the difference &?- 1 
rapidly decreases as tith energy growth of 
the particles the argument of the Bessel fun- 
ction decreases. The detailed estimations4 
show that the phase stability region of the 
outlying particles becomes a little wider and 
slightly moved to the positive phases side in 
comparison with the particles moving along 
the axis, The difference of the movement inva- 
riables for axial and outlying particles with 
low energies and high absolute values of the 
equilibrium phase is unessential. As far as 
the particle energy increases the movement 
invariables draw nearer even under decreasing 
of the absolute value of the equilibrium 
phase, Later on while analysing the bunches 
movement let us consider all the particles to 
be axial and I,(k,z)zl . 

The longitudinal movement of the particles 
in the accelerator with space--uniform focusing 
under constant equilibrium phase does not 
differ of the longitudinal movement in other 
systems with paralleled accelerating gaps. 
Energy increase of the equilibrium particle 
along the acceleration period L =k /!!I is 
constant: 

The rate of acceleration decreases adiabati- 
cally as the particles energy rises 

The phase oscillations are stable under the 
such index, The amplitude of the small phase 
oscillations decreases slower than in an 
Alvarez type accelerator and the amplitude of 
the particles momentum faster: ~~w.‘;~~~~: z 

The length of the resonator e to accelerate 
particles from the energy W. to the final 
energyW$ may be estimated by the expression 

I@, J&o w+ 
3 

L&.) - ($,“l j E,=“oC2’ 

The use of the structure with the space- 
uniform focusing gives possibilities to dec- 
rease the injection energy and to increase 
the intensity of the accelerated beam. The 
acceleration period $ b> equal to the half 
of the electrodes modulatihn period, may be 
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rather short, This allows to begin accelera- 
tion from low energies, From the equation (10) 
it follows that the quadrupole focusing in 
space-uniform system does not depend of the 
particle phase and if the specific accelera- 
tion is small enough the frequencies of the 
transversal oscillations have weak coupling 
with phases of the particles. By the fixed 
depth of the electrodes modulation the par- 
tial increase of the energy is constant, Then 
the margine of the acceleration per length 
unit is under the low enrgies relatively 
large. This allows to have the equilibrium 
phase near to 90* at the beginning of the ac- 
celerator. The bunches follow close to each 
other and the mean current is almost equal to 
the peak one, In this system it is possible 
such adiabatic changing of the parameters 
along the accelerator axis with the energy 
rise, when the distance between the bunches 
increases, but the geometrical dimensions of 
the bunches under this process remain constant 
and therefore the density of the space charge 
remains constant also. These features of the 
system with space-uniform focusing allow to 
get high currents under low injection energy< 

The Hamiltonian (18) is not the invariable 
of the motion, because the parameters T, qs, 
kj are the functions of the distance, Mever- 

theless the curves H=~=nst are the phase tra- 
jectories under adiabatic approximation. 
These trajectories are changing their forms 
slowly, the area enveloped by the closed tra- 
jectory being constant, Let us assume the 
conditions of the accelarator parameters 
changing along the axis to ensure the cons- 
tancy of the bunches length and conservation 
of the charge density distribution along the 
whole length of the bunch, Simultaneously we 
shall proceed from the assumption that the 
whole area enveloped by the separatrix is 
fully filled by particles after injection, 
The phase trajectory of the small oscilla- 
tions is described by the ellipsis equation 

where P=nZ. According to the theorem of 
the adiabatic invriable PT! = const. It is 
clear from this that the condition RE const 
or 

Ts;n (OS 

(ls2 
f const 

ensures the conservation of all the phase 
trajectories with linear approximation, On 
that score this guarantees the conservation 
of the charge density distribution in the li- 
near region inside the separatrix. Let then 
PC to be the phase longitude of the separa- 
trix. The value Q)C is connected with the 
equilibrium phase by the equation 6 

R - She), 
tm=- f- #+pc . 

The graph of PC as a function of the equilib- 
rium phase for the 
val from zero to-” 7 

hole length of the inter- 
2 is shown in Fig. 5. The 

geometrical length of the aeparatrix is 

% 
Irs =- c 5i? 0 0, 

If one decreases the equilibrium phase along 
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the accelerator axis in such a way that the 
value Vs!!?c will remain constant,the length of 
the bunch will not change, The half of the 
vertical dimension of the separatrix depends 
on the length of the separatrix as 

The function 

3&s)= fJ?- -&fg 
C 5 

is shown in Fig,?. If RP con:t and 2,~const 
then the vertical dimension of the separatrix 
is also almost constant, In particular, if 
one puts ‘p,-31%l, b(ps= vSt$yS3 the constancy 
of PC is quite strict: $=f/~J’j, At the big va- 
lues of the equilibrium phase, up to ups= -1,5, 
the function ‘35 deviation of the pointed va- 
lue does not exeed 5%. So the constant charge 
density distribution remains along the whole 
length of the bunch with practically enough 
accuracy, The conditions of the quasi-atatio- 
narity R = const, EC= const simple define 
the dependence of the acceleration effective- 
ness and the equilibrium phase on the current 
energy of an equilibrium particle WS . These 
parameters are connected with the final values 
of T$, ‘Q+ , W+ by the expressions , 

d- 
ws s’n 9% 

‘pc(cps)= q$f!!) 2 ; m9= T(w,)qq- b 
The acceleration rate in the structure with 
quasi-stationary bunches is defined by the 
eauation 

- f dMs = 2 R 2. Kx &a. 0 32 o&), 
(21) 

where F2 CCq,) zz $(ys)/if9(ps(,The function J;! 
plot is shown in Fig.5; the function 32 may 
be represented by the series * 
$= 1 + 0,3py+ 0,096Y ($+ 0.024@~+~... 

The length of the accelerating resonator with 
quasi-stationary bunches may be found integ- 
rating the equation (21). Let ua note that 
the resonator is relatively short in spite of 
very small acceleration rate at the beginning, 
as the partial energy increase grows fast due 
to the growth of the acceleration effective- 
ness. 

If to take into account the expression (Q), 
(111, the equation (10) may be represented as 

g - ()‘[K2cmd - $& 5;ncq]X= 0, (22) 

The first term in the square brackets defines 
the effect of the space-uniform quadrupole 
focusing, As it was noted earlier, in contrast 
to the HF focusing in the apace-periodical 
structures, in this case the focusing term 
does not depend of the particle phase. The 
parameter - -2 

dL ‘x K*==w CL 0 
determines the stiffness of the focusing 
channel. The defocusing factor & may be 
written a8 

IT@ U‘T 
K=x+ 

(23) 

(24) 
The defocusing factor is not zero at thoee 
cases when the distance between the electro- 
des is modulated (Tf 0) and the effect of 



acceleration takea place, The equation (22) 
ia the Mathieu equation, The limits of firsEt 
region of the stable solutions under K’($- 
with enough accuracy may be defined by the 
expressions 

,& _ rtt& s;kcp :, K2c: z2- 1(, sin? (25) 

The analysis of the expressions (25) shows 
that the stability of the transversal oscil- 
lations may be realised under any values of 
the equilibrium phase up to -go0 . Practical- 
ly the only first expression (25) is essen- 
tial. It leads to the condition 

e UL 32~3T .a y 
-> 

W5 
&( ) 

F 

providing the transversal stability of the 
particles under any phases of the longitudi- 
nal oscillations Cp> -z . 

The averaged frequency of the transversal 
oscillations )= BKRt/ti under the smooth 

approximation is defined by 

/u2= -$ KY+ 2& S$, 

For the equilibrium particle 

pi+= $ /(I/- ZnZ($$ 

It is clear from this expression that in the 
accelerator with quasi-stationary bunches the 
averaged frequency of the transversal oscil- 
lat ions is constant if a/@ =const , 

The periodical coefficient of the equation 
(22) is an explicit function of the time and 
does not depend on the longitudinal co-ordi- 
nate. The Floquet function cp(C) also does not 
depend on the longitudinal co-ordinate. This 
peculiarity of the solution is distinctive 
for an accelerator with space-uniform focu- 
sing. Really this peculiarity comes to the 
fact that the dimensions of the matched beam 
remain constant along the axis of the channel, 
But the beam dimensions are pulsating in time, 
In every of the X02 or YOZ planes the cross 
sections of the beam reach their maximum 
dimensions at the moments when the channel is 
focusing in this plane and minimum dimension 
when the channel is defocusing in the plane, 

dX The Floquet ellipsis in the plane x,~~ is 
represented by the equation 

where dlQi 

Ao 
=c -i-- +#$fi s,-w,,l Qi2; c,~-w,h’t~ 

ht lQ1’ 
wf z la;.* -normalized emittance of the beam, 

The instantenious value of the transversal 
oscillation frequency depends on the Floquet 
function modulus as 

1 
Wz= WI lQ&)i2 ' 

The matched beam envelope is proportional to 
the Floquet function modulus 

r I 

so the normalized acceptance of the channel 
will be defined by the well known expression 

Vch fy at,;,, 2 =- 

The Fig,6 gives the depen$ance of the 
indimensional value I cpwl,Q, on -the 
channel parameters K2 and ~~=-E(oSi~~~~. The 
coefficients of the Floquet ellipsis equation 
at any point of the channel including the 
output of the accelerator are the periodical 
function of time with the period 27i/w , 

The accelerator with space-uniform focu- 
eing does not require a high-voltage injector, 
gives possibility to have a high coefficient 
of capture of particles into acceleration 
conditions without increasing of phase density 
in transversal phase space and has wide 
acceptance, But such an accelerator is effec- 
tive only for energies not more than 2 - 3 
MeV/nucleon as there is no possibilities to 
get a high acceleration rate under big 
velocities of particles. That is why the 
accelerators with space-uniform focusing are 
effective as an initial part of the linear 
accelerator for high energies and big inten- 
sities, Several projects with space-uniform 
focusing structures as an initial part of 
high-current linear accelerators were 
proposed?-’ 
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Figure 3. Figure 6. 


