
IEEE Transactions on Nuclear Science, Vol. NS-26, No. 3, June 1979

APPLICATIONS OF DISTRIBUTED MICROPROCESSORS IN THE CESR CONTROL SYSTEM

Donald B. Reavesl, Frank W. Dain’, and Ray Helmke'

Abstract

Intelligent microprocessor based Interfaces are
used to relieve the main control computers of time
consuming tasks requlrlng real-time response. The
baste system consists of a Zllog Z80 CPU, CESR control
system interface, read-only and read-write memory, and
input/output address decode circuitry. One application
employs inexpensive potentiometers to provide a cost
effective operator-machine interface with excellent
response. It uses a 64 channel analog-to-digital con-
verter to scan 30 two-gang potentiometers, calculating
the change in position of each knob 60 times a second.
A second application uses multiprogramming techniques
to achieve separate position setting of ten motor-
controlled devices with adaptive feedback. The
controller can accept high-level commands to let the
microprocessor guide the device to its destination, or
low-level commands to let the main computer retain
complete control of the device. Applications include
RF phase-shifters and attenuators, and motor-driven
variacs.

Introduction

The overall relationship between parts of the CESR
control system is illustrated in Figure 1. The control
computer (a PDP-11/34) communicates with the
microcomputers via a data link called the X-Bus3. Like
all other interface cards, the microcomputers are
mounted in one of 16 crates which attach directly to
the X-Bus.

,--- -- XBUS CRATE ---------J

I -.

I

INTERFACE’
.*. CARDS 1

______- ---.....------- --

r---- XBus CRATE - -- -- -- -,
I I

(MAX-16 TIMESI

r--- ----------_ ---
1

.I
L--- ____-- --Y------1

Figure 1

The common part of all applications which are
based on microcomputers is called the microprocessor
foundation logic. It consists of a simple
microcomputer and the circuitry necessary to interface
it to the bus in the crate (C-Bus). The computer
comprises the central processing unit, or CPU, its
program and data memory, the input/output devices, and
the bus structure which connects them.

I. Laboratory of Nuclear Studies, Cornell University,
Ithaca, New York 14853

2. Department of Geological Sciences, Kimball Hall,
Cornell University, Ithaca, New York 14853

The CPU used in the microprocessor foundation
logic Is the Zilog 180, a typical general purpose 8 bit
microprocessing unit. It was chosen because it is
compatible with Intel's 8080 processor and in addition
offers many enhancements. An input called Nonmaskable
Interrupt can be used to interrupt a program, cause
execution of a special routine, and then return to the
original program. It Is used in the Motor Controller
application to allow the CPU to measure time intervals;
NM1 Is asserted at regular intervals and the interrupt
routine increments a counter.

The C-Bus Interface allows the control computer to
perform direct memory access operations in the
microcomputer's memory. ,Use of DMA can greatly
simplify many communication problems. For instance,
the CPU may keep an up-to-date table of information in
its memory for use by the control computer. When the
control computer requires the data, it can get them
directly without having to wait for the CPU to perform
transfer functions. The CPU need only acknowledge the
bus request asserted by the C-Bus interface, an action
which is performed automatically in a manner which is
transparent to the program which the CPU is executing.

Input/output devices in this system are referenced
in the same manner as memory. This reduces the
complexity of the C-Bus interface and allows the 280 to
use data from input devices directly in instructions
such as add or subtract. (For devices which are
implemented as standard Z80 inputs, using input
addresses instead of memory addresses, only load and
store instructions are allowed.)

The microcomputers are programmed in assembly
language using a commercial cross assembler which
resides on the lab's main computer, a Decsystem-IO.
Object code is then transferred to a PDP-11 where it is
either programmed into an EPROM or loaded directly into
the microcomputer's memory via the X-Bus. The direct
loading process is used during hardware and firmware
testing to reduce the time required for changing
programs.

The foundation logic, which required about 3 man
months to implement, uses 50 TTL and MOS LSI chips and
Is mounted on a standard 9 by 12 inch C-Bus board. The
Knob Scanner and Motor Controller applications require
an additional 15 and 50 chips respectively.

Microprocessor Knob Scanner

The purpose of the knob scanning system is to
provide the operator with computer inputs in the form
of control panel knob positions. Because these data
are to be used to effect changes in program variables,

the Information is most useful in incremental form.
Ideally, the incremental change reported should be
Proportional to the aIiIOUnt of rotatlon of the knob,
While this IS not beyond the ability of commercially
available hardware (e.g. shaft encoded knobs), it is
not absolutely necessary. A smooth, monotonic response
has proven to be sufficient.

Hardware Knob

Each knob consists of two 1K potentiometers on a
single shaft which are used as voltage dividers to
provide inputs to an analog to digital converter. The
tW0 pots are mounted 180 degrees out of phase, and have
had their stops removed to allow unlimited rotation.
Since the approximately linear region of each pot
extends over more than half a revolution, at least one

0018-9499/79/06DO-3445$00.75 0 1979 IEEE 3445

© 1979 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

of the pots is always in this "linear" region. The variable on an adjacent numeric display.
voltage curves for the two pots in a sample knob,
plotted as a function of angle, are shown in Figure 2. In an earlier implementation in which the control

computer itself scanned the knobs 20 times a second,
VOLTAGE CURVE OF KNOB increments were often calculated incorrectly because of

the low sample rate. In the Knob Scanner, the tlme
5

interval between samples of a given knob varles wlth
the amount of calculation being performed by the CPU.
This time varies from l/60 of a second, when no knobs
are being turned, to l/40 of a second, when all 30
knobs are being turned. This represents a significant
improvement over the earlier implementation.

0: L;/ 1 ,LJ, I
0 12 144 216 288 360

ANGLE

Figure 2

Interface AnalOQ to DIgital

The Microprocessor Knob Scanner consists of an
analog input interface built upon the Microprocessor
Foundation Logic. This interface is made up of three
basic parts: an input multiplexer, a 12 bit analog to
digltal converter, and control registers necessary for
the CPU to manipulate the interface. The time required
for a conversion is 25 microseconds, so that the
maximum rate is 40,000 conversions per second.

Knob Scanning Algorithm

The knob scanning algorithm is an infinite loop
which first determines if the control computer has
requested a particular action, such as halting or
clearing the incremental data. It then updates the
incremental data for each knob.

The increment of a knob is determined as follows.
By considering Figure 2, one can see that if both
voltages are within the bounds indicated by the
horizontal lines, the one with the smaller slope
represents the linear region for the associated pot.
Thus, if both pots are now and were on the last pass
within these bounds, the increment is chosen to be the
smaller of the changes in the pots. If only one pot is
within these bounds, the increment is chosen to be the
change in that pot. Otherwise, the change in pot B is
arbitrarly chosen.

Communication between the control computer and the
Knob Scanner is accomplished by reserving arrays of
information in the microcomputer memory. In addition
to the raw analog values read from the pots and the
Incremental changes in the knobs, a Control/Status byte
is available which indicates fluctuations detected in
the power supply and is used by the control computer to
initiate certain actions.

Performance

Knob Scanners have been used in the control system
since November 1977, and have proven to meet their
design requirements reliably.

When the calculated position of a knob undergoing
constant rotation is plotted as a function of time, the
response is shown to be quite linear, as long as the
knob is turned at a reasonable rate. The only

characteristic of the knobs In which the small
nonllnearity is noticeable is that if a knob is
returned to its original position after some use, the

associated variable does not exactly resume its
orlglnal value. This phenomenon generally does not
cause any problems, since the operator observes the

3446

In order to achieve the same performance using a
PDP-11/34 approximately 40% of the available processing
time Is required, as measured by a program written by
S. Peck4. In a system where control panel servicing
requires 50% of the processor, using the control
computer to perform the Knob Scanning algorithm would
leave virtually no time for application programs. If
the equivalent of two Microprocessor Knob Scanners
(i.e. 60 knobs) were required, the control computer
would simply be unable to read each knob often enough
to achieve acceptable results.

Microprocessor Motor Controller

Several machine variables in the lab are remotely
controlled via motors with simple directional controls.
These include RF phase shifters and attenuators, and
motor driven variacs. Unlike other machine variables,
there is no straightforward way to set these variables
to predetermined values. Instead, only simple increase
or decrease commands are easy to implement.

The purpose of the Motor Controller is to
transform the desired destinations into directional
commands for each of ten motors. In addit,ion, the
Motor Controller allows the operator to issue
directional commands in order to fine-tune the
associated machine variables.

Motor Hardware

To indicate the precise location of the device, an
analog signal is sent to the controller. The operator
specifies the value to be assigned to the associated
machine variable in terms of the digitized values of
this signal. The device being moved by the motor can
travel only a limited distance in either direction. To
prevent damage to the device, two limit switches turn
the motor off when the end of travel is reached. A
single 24 volt signal is sent to the Motor ContrnllPr
when either of the switches is actuated. Control of
the motor is accomplished via two 24 volt signals.
Each turns the motor on,in a particular direction. If
neither is asserted, the motor is off.

Hardware Interface

The Motor Controller consists of three interfaces
built upon the Microprocessor Foundation Logic. Each
interface has ten channels, so that ten motor
controlled devices can be serviced. The analog input
interface is similar to that used in the Knob Scanner.
A high level digital input interface uses opto-
isolators to isolate and translate the limit switch
input signals to TTL levels. These inputs are fed into
latches which can be read by the CPU or C-BUS
interface. A high level digital output interface
performs a similar function for output.

An interrupt circuit, which supplies a time base
for scheduling, is a simple oscillator that provides a
short pulse to the NM1 input of the 280 every 5 ms.

In order to prevent a failure on the part of the
Motor Controller from issuing invalid commands to its
output devices, a failsafe output enable circuit has
been Implemented. It consists of two one-shots,
triggered by the CPU, which are used to enable the
tri-state outputs of the latches containing the motor
direction data. If the latches are not enabled, all
motor direction outputs are turned off. To keep the
outputs enabled, the enable one-shot must be
retriggered at time intervals no greater than 20 ms.
The trlgger one-shot prevents the enable one-shot from
being trlggered during a failure by allowing it to be
triggerred for only a very short time. When adjusted
wow-ly, there are only six possible combinations of
two instructions which can trigger the enable one-shot,
virtually eliminating the possibility of enabling the
hardware during a failure.

Motor Controller Algorithm

The Motor Controller algorithm consists of three
basic parts: the TECO (Timed Electrical Contact
Output) algorithm, the interrupt handler, and the reset
algorithm.

The TECO algorithm allows the operator to issue
directional commands for fine-tuning machine variables
by accepting an instruction specifying a direction and
a length of time for which a motor is to be run. This
is implemented by keeping an array, TICKS, which
contains for each motor the number of tlme units until
the motor is to be turned off. The main program loop
examines these values and, using information stored in
a direction array, turns the motors on or off
accordingly.

The interrupt handler, which is executed every
5 ms, decrements any nonzero entries in the TICKS
array. It also increments a variable which is used by
the reset algorithm to determine time intervals.

The reset algorithm operates by first starting the
motor in the required direction, end then turning it
off at the proper time so that the device will coast to
a stop at the requested destination. This process is
repeated until the position of the device is within a
small value of the destination.

The Motor Controller learns the characteristics of
the devices it controls, so that after some practice it
will be able to perform a reset in a single try. This
is accomplished by keeping a table of estimated values
to determine how far each motor will coast when turned
off. The possible destinations are partitioned into
segments. For each of these segments, the table
contains the expected amount the motor will coast when
turned off from either direction. After each
successful reset operation, the appropriate entry in
the table is set to the observed coast value.

The TECO and reset algorithms can be combined into
a single program by enclosing them ‘in a loop which
determines at the beginning of each interation which
algorithm to execute. The resulting program will
control only a single device, and therefore needs
modification to control multiple devices. BY a
strlghtforward procedure, the program can be
generalized to service any number of devices In a
slmple multitask environment'. In the present
implementation, each device is serviced about 100 times
a second. This seems to be more than adequate.

The Motor Controller provides the control computer
with information about the general status of the
controller and the status of each device. This
includes an indication of which algorithm (TECO or
reset) is being executed, the location of each device,

whether the device is stuck or Is at an extreme of
travel, and how many trys were necessary to perform the
last reset operatlon.

Performance

At the present time, a microcomputer has been
controlling the RF phase shifters for only a few
months. Fairly thorough testing has proven it quite
capable of meeting Its design specifications. However,
the real test of the reset algorithm will be made when
the Llnac and Synchrotron are routinely switched
between e+ and e- settings.

Error Detection and Reliability

Methods used for detectjng and correcting errors
were Intended to cover all cases which could be handled
in the firmware. These include hardware errors
external to the microcomputer such as knob power supply
fluctuations or a motor controlled device being stuck,
and operator errors such as attempting to set a motor
controlled device past its extreme. Algorithm errors,
such as being unable to move a device to a particular
poslt1on within a reasonable number of tries, are also
reported.

Errors in the microcomputer itself are handled
either by standard X-Bus mechanisms or by a handshaking
mechanism involving the control computer. All
microprocessor based applications include a
Control/Status byte. One of its functions is to allow
the control computer to determine whether the
mlcrocomputer is executing its program. At regular
intervals, the control computer clears one bit of this
byte. During normal operation, the microcomputer sets
the same bit. If the control computer detects this bit
in the zero state after an appropriate delay, it IS
assumed that the microcomputer has failed, and
appropriate action is taken.

Errors which are fatal to the microcomputer's
program integrity are prevented from affecting output
devices In the Motor Controller by use of the failsafe
output enable circuit.

These measures seem to be adequate for the
problems which have arisen to date. It is not
presently known how the large scale integration
components used in the microcomputer, the CPU and
memory, will stand up to the environment in which they
must operate. Data concerning radiation effects on
these components are not available. It will be
interesting to see if the error mechanisms listed above
will be adequate to handle any problems which arise.

Cost Effectiveness

It might be argued that, including total
development time, the cost of these two projects
exceeds the cost which would be incurred by using
alternate solutions. It is certainly true that using
different hardware (shaft encoded knobs Instead of
potentiometers, and stepping motors instead of DC
motors) would have simplified the algorithms and
enhanced the results of these projects. However, the
development of a simple yet flexible microcomputer
interface will continue to pay for itself as other
applications arlse.

3. R. Helmke, S. Ball, and D. Rice, Interface Hardware
for the CESR Control System, E-14 this conference.

4. Personal communication.
5. D.B. Reaves, Applications of Distributed

Microprocessors in the CESR Control System,
Master's thesis, Cornell University, 1979.

3447

