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SINGLE FEEDBACK SYSTEM FOR SIMULTANEOUS DAMPTNG OF HORIZONTAL AND LONGITUDINAL COHERENT OSCILLATIONS* 

A. W. Chao, P. L. Morton and J. R. Rees? 

Introduction 

In a storage ring, the center of charge of a part- 
icle bunch may oscillate in the transverse-betatron, or 
the longitudinal-synchrotron degrees of freedom, In 
case of a coherent instability, the amplitude of these 
oscillations may grow indefinitely in time, leading to 
the loss of the particle bunch. In many machines, feed- 
bac%k sys terns have been successfully used to damp un- 
stable coherent bunch oscillations. The basic princi- 
ple is quite simple: one first measures the deviation 
of the bunch’s position in some coordinate from its 
ideal trajectory and then tries to perturb the bunch in 
such a way that the deviation becomes smaller after the 
pe.rturbati0n.l In practice, however, the situation may 
be slightly more complicated. The complication comes 
mainly from the fact that the position deviations mea- 
sured or the pertubation applied to the bunch are often 
not pure coordinates of the degree of freedom which one 
wants to damp. For example, an easily measurable quan- 
tity is the horizontal displacement x of the bunrh, but 
the value of x contains both horizontal-betatron and 
synchrotron contributions. Similarly, an easily appli- 
cable perturbation is to kick the bunch horizontally by 
an angle Ax’, but this kic!i in general excites both 
horizontal-betatron and synchrotron motions. Tt is 
clear that the horizontal-betatron and the synchrotron 
motions are intrinsically coupled and a consistent ana- 
lysis of a feedback system for these degrees of freedom 
must take both dimensions simultaneously into consider- 
ation. The same difficulty does not appear in feed- 
back damping of vertical-betatron oscillation in most 
rings because the vertical dimension is coupled to the 
other twc, degrees of freedom only by electromagnetic 
field errors existing in the machine. 

To describe the horizontal motion of the bunch, we 
need four coordinates, which can be written as nvector 
{x,x’ ,z,c;L Where x and z are the horizontal and long- 
itudinal displacements of the hunch center relative to 
the ideal trajectory; x’ is the angle between the 
bunch’s direction of motion and the ideal trajectory; 
and ~=AE/E is relative energy error of the bunch. Among 
the four variables, x and z are easy to measure by 
position monitors, while x’ and 6 are easy to change by 
electromagnetic devices. In combination, this suggests 
four possible types of feedback systems: 

5pe (x,6) : measuring x and changing 6 
Type (x,x’): measuring x and changing x’ 
Type (z,Q : measuring z and changing 6 
Type (2,x’) : measuring z and changing x’ 

In the following, we will present a complete analysis 
of the Type (x,6) feedback system, using a matrix 
method. The analyses of other types are similar to 
that of Type (x,6) and only the results are included. 
We then include some comparisons of these types of feed- 
back schemes in terms of power consumptions and the 
effectiveness in damping the horizontal-betatron and 
synchrotron oscillations. We will also discuss some 
effects of position measuring errors on the performance 
of the feedback systems. 

where TCM tllc transfer matrix from the monitor tn the 
cavi ty . 

The definitions of the elements for the matricies 
T 0’ ?x and hot are given icn Ref. 3. To find the Type 
(x,6) feedback damping rates, we need to find the 
eigenvalues of the matrix Ttot. The eigenvalues are 
given by the solution of the secular equation 

det (Ttot -1) = 0, (4) 

Solving Eq. (4) for X = exp {-ak’?2F(vk+Avk)) with 
k=(x or s), yields an exact solution for the damping 
constants ak and the coherent tune shifts Avk. The 
4 eigenvalues obey the property Xl X2 A3 h4 = det 
(Ttot) , which for Type (x,6) becomes 

-25 -2rr. 
e . s 

= 1 -I- 5 l),,, + (2 , 
[ I 

(5) 

with 

Q = dBcBrn n,,’ sin A~J- ~~ Q~(COS A$-cuc sin OJi), 
C 

and A$=27rVx-~&+-$c the betatron phase advance from the 
monitor to the feedback cavity. For weak damping, 
la,,,1 ((1, we have the following sum rule 

c+( t cts = - -+(qn f Q), 
(6) 

If the cavity and the monitor are located at the same 
location (A$=O,rl,=ri,,Pc=&,) we find s t cls = 0, which 
means that damping for one mode necessarily causes anti 
damping for the other mc-de. 

It turns out that more practical approximate ex- 
pressions for the damping rates can be obtained from 
Eq. (4) provided that 

(i.) 2nvs <cl. 
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(ii> the synchrotron and betatron tunes are very 
different so that the synchrotron-betatron 1 9 

coupling effect can be ignored (See Ref. 4). u = 2-v 
max 8~r cav EmaxL (9) 

(iii) the feedback system is reasonably weak so 
that that damping rates IcI~,~] ((1. where Vcav is the cavity volume filled with an electric 

The results of this approximation are, for Type field of strength 
(x, 6) feedback system, Type (x,6) (A& = TX,) : 

E E 
=- A6 max e L max cav 

‘nrn 
(7) with I,,,, 

a x 
the length of the cavity. -- 

S 2 
Theratio of 

These results are consistent with the sum rule, Eq. (6). 
The matrix method used above to analyze the Type 

(x,6) feedback system can be applied to other types as 
well, we make the same approximations as before to 
obtain the damping rates for the other three types of 
feedback systems (See Ref. 3 for detail results). In 
gerreral the feedback systems damp or anti-damp both In Tables 1 and 2. the estimates of the power con- 
the horizontal-betatron and the synchrotron oscill- sumption of the various types of feedback systems arc2 
ations. As a result, installation of such feedback given for the horizontal-betatron mode and synchrotron 
systems requires careful arrangements. Putting feed- mode respectively, where the quantity c is given by 
back components at favorable positions damps both 
modes, while unfavorable arrangements may damp one mode 

c E 
Nb V. E 

2 

but anti-damp the other mode. 
2lT T e2L 2N 2 

(11) 

Comparison of Feedback Schemes 0 o d 

Ln this section, we will compare the four types of The betatron frequency vx is usual.ly much larger that 
feedback schemes in terms of their effectiveness in unity so that for damping the horizontal-betatron 
damping the horizontal-betatron and the synchrotron oscillations the Type (x,x’) and (2,x’) feedback 
modes and their required power consumption. systems, in which the variable x’ is changed, will re- 

We demand that the system damps a mode oscillation quire the least power. 
generally much Less 

The synchrotron frequency vs is 
with a “one-sigma” amplitude by a factor of e in Nd than one so that for damping the 
turns. We will make order-of-magnitude estimates, 
letting B-functions z R/v~, n-functions %R/Vx2, 

synchrotron oscillation the Type (x,6) feedback system, 

momentum compaction factor CXXllV,2 
in which x is measured and 6 changed, will require the 

and A$ arbitrary. least power. 
We will also assume that Vx >> 1 ‘a‘nd V, << 1. Under 
these conditions, the maximum deviations in x,x’, z and 
6 for a one-sigma horizontal-betatron oscillation are 
a,,uxVx/R,Ux/Vx and ox/fVx where (I~ is the rms betatron 
beam size and f=R/Vx2Vs is the ratio of the rms bunch 
length to the rms energy spread, u6. Similar values for 
the synchrotron mode are Rog/vx2,06/vx, fog and CT&. 

The order of magnitude expressions of the damping 
rates for the horizontal-betatron mode are shown in 
Table 1. In order to have a damping rate of o&=l/Nd, 
the required feedback strengths Axlmax for Types (x,x’) 
and (2,x’) and Asmax for Types (x, 6) and (z, 6) are also 
shown in Table 1. To damp a n-sigma Oscillation in Nd 
turns, the required feedback strengths must be increas- 
ed by a factor of n. Similar results for the synchro- 
tron mode are shown in Table 2, where a,, is the part- 
ial momentum compaction from the monitor to the cavity. 

The power consumption of a feedback system is 
directly proportional to the electromagnetic field 

The damping rate per turn, on the other hand, due to 

energy, U, stored in the system. In order to feed back 
the feedback is 

Effects Caused By Errors ____~ 
So far we have assumed that the beam position meas- 

urements by the monitors do not contain errors. In 
reality, the noise in the position measuring signal 
sent to the feedback device causes a diffusion in the 
bunch mot ion. Tn equilibrium, this diffusion effect is 
balanced by the feedback damping effect, giving rise to 
a gaussian distribution in the synchrotron and betatron 
amplitudes of the bunch motion. 

As an example, consider a Type (x,6) feedback 
system. Let ?i be the position measuring noise, corres- 
ponding to a contribution of gji to the energy gain at 
the feedback cavity. The synchrotron energy spread 
then has a diffusion rate per turn given by 

-$ G2> = + Q2 <x2> 

on a-turn-by-turn basis, this energy U is dissipated 
before the next particle bunch arrives. The required 
feedback power is therefore given by P=U !?b/T,, where 
Nb is the number of particle bunches and To is the 
revolution period. For a feedback system which uses a 
kicker magnet {Types (x,x’) and (z,x’)), the maximum 
stored field energy is given by, in the cgs units, 

1 z----v 2 
u max 811 93 Bmax (8) 

where as is the damping constant given by Eq, (7) . In 
equilibrium, the sum of the ahove two expressions van- 
ishes, yielding 

c2 <x2> a2) = -&g---- (12) 
S 

The position measuring noises also give rise to a 
where Vma 

! 
is the effective volume in the kicker magnet spread in the betatron amplitude of the bunch. The 

filled wi h a magnetic field of strength diffusion rate is 

B 
E ai ---Ax’ 

max eL max 
mw 

& <xg2) = 3 qc2 G2 <x2> 

with Lmag the length of the magnet kicker, E the beam where n, is the dispersion function at the cavity and 
energy and e the unit charge. For a feedback sys tern the damping rate is 
which uses a cavity {Types (x,6) (z, 6) 1, we find 

& <xg2) = -2ax <xg2) 
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where a x is given by Eq. (7). In equilibrium, we find 

Cxe2) = 
q2 2 c 5 <X2) 

4 a 
(13) 

X 

These results, Eqs. (12) and (13)) together with the 
results for the other types of feedback systems, are 
summarized in Table 3. The feedback damping constants 
for different feedback types are given by Eq. (7) and 
Ref. 3, except that, for Type (x, x’) cs is dominated 
by the radiation damping since the feedback damping is 
not effective. In practice, these noises in bunch 
motion usually are small compared with the natural 
incoherent spread within the beam and should not impose 
serious problems. 

Table I. Horizontal-Betatron Mode 

Feedback -Type / DaRm::eng ; ‘;2z~ ) :~~~~~e 
Type (x, 6) 9 ’ 

A6c 
= ixrn (2ivE2) i’;xj c “$5) 

Type (x, x’) 

Ax’~ 

Type (z, x’) 

Ax’k = cz m 
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Table II. Synchrotron Mode 

Damping 
Rate 

Type (x,6) 

Abe = ix m 

Type (x,x’) 

Ax;( = ixm 0 

Type (z,&) 

Ahc = iZn, 

Required 
Feedback 
Strength 

A6 = c,max 

Required 
Feedback 

Power 

Ax’ k,max = 

m cc 

A6 = c,max 

AX' k,max = 

Table III 

Synchrotron Betatron 
Mode Mode 

Type (x,6) 

Type (x,x’) 

Ax; = ixm 
S 

Adc = 62 m S 

Type (z,x’) 

Ax; = 5zm 
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