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TRANSPORT CALCULATIONS FOR VERY HIGH CURRENT BEAMS 
Samuel Penner and Annija Galejs* 

Abstract 

A computer program has been developed to calcu- 
late the effect of the transverse space charge forces 
on a particle beam. The method is to divide the beam 
into a large number, M, of "beamlets," and compute the 
force on each beamlet by summing over the forces due 
to all the others, M &lo00 is needed to make spur- 
ious collisional effects negligib1e.l To the space 
charge forces, we add the forces due to the physical 
components of the system such as quadrupoles, sole- 
noids or accelerating gaps. Using this program we 
have verified the prediction2 that at high current, 
certain perturbations of the K-V distributions are 
unstable. In a FODO line tuned to 90" phase advance 
per cell at zero current, with the phase advance de- 
pressed to 30" by space charge, we found that the rms 
emittance of a perturbed K-V distribution grows by a 
factor of 2 in - 40 cells, and then remains stable, 
although no longer having the K-V form. For thin-lens 
focusing, this result is in good agreement with 
Haber's calculation. The use of finite quadrupoles 
rather than thin lenses has remarkably little effect. 

Introduction 

In a number of important applications of accel- 
erator technology, it is necessary to transport par- 
ticle beams of very high currents over extended dis- 
tances. One such application is heavy-ion triggered 
inertial confinement fusion, where kiloampere beams 
of multi-GeV heavy ions (A > ZOO) must be brought to 
focus on a fusion pellet with dimensions of order one 
millimeter. Recent theoretical studies indicate that 
at sufficiently high current, a particle beam will be 
unstable to certain perturbations of its phase space 
distribution, at least in the case where the initial 
distribution is of the Kapchinsky-Vladimirsky (K-V) 
form. Presently available theoretical methods cannot 
answer the important questions of (1) how large the 
instabilities will become before saturating (or indeed 
if they will eventually saturate), or (2) whether 
these or similar instabilities exist for real beams 
which, in general, do not have the K-V form. The only 
method which appears suitable for answering these 
questions for this highly non-linear problem is numer- 
ical simulation using a large-scale computer program. 
In this straightforward approach the critical question 
is whether it is possible to represent a real beam 
(with a line density of 1010-1013 particles/cm) by a 
"reasonable" number, M, of representative particle 
trajectories and still obtain results which are appli- 
cable to the real beam. Reasonable here means that 
the calculations must be performed within acceptable 
computer running times, costs, and available memory 
size. We have developed a computer program which per- 
forms the required calculations including the effects 
of external focusing elements (quadrupole and solenoid 
magnets), and static accelerating fields (as in an 
induction linear accelerator), as well as the space 
charge forces. The calculation method has been des- 
cribed earlier. 3 Results obtained with this program 
have been compared with theoretical predictions2+'+ and 
another, completely independent, numerical simulation 
program1y5 and appear to be reliable. We have also 
performed a simulation of a planned experimental mea- 
surement. Eventual comparison of these calculations 
with experiment will provide a definitive test of the 
reliability of the simulation approach. 
--___ 

*National Bureau of Standards, Washington, D.C. 20234. 
Work supported in part by Division of High Energy 
Physics, Department of Energy. 

Method 

We represent a particle beam of total current I by 
a set of M line current of magnitude (I/M). We choose 
a local Cartesian coordinate system (x,y,s), where s is 
the direction of propagation of the beam, The equation 
of motion of line current i is then 

d2xi 
M 

xi - x. 
------= - _9. 

Kx(s)xi + 34 1 
J 

ds2 j=l (x~-X~)~ f (~~-y~)~ 
(1) 

j#i 

and similarly for yi. The notation here is the same as 
in reference 3. The following approximations are made 
in obtaining equation (1): 

more 
a. The beam is continuous 
precise1 y, the longitudina 

n the s direction or, 
extent of the beam is 

large compared to xmax/y and Y,,,/Y. 

b. The beam is paraxial, i.e. 

[$I'<< 1 and [$I2 << 1 for all i, and are 

neglected. 

C. The beam is monoenergetic. 

d. The externa 1 focusing forces are 
K,(s) and KY(s) are not functions of x or 

linear, i.e. 

Of these approximations, only a is important, The 
others could be removed by straightforward modifica- 
tions of the existing program. 

The 2M second order differential equations of the 
type given by equation (1) are transformed (trivially) 
to 4M first order equations with the additional inde- 
pendent variables 

and solved simultaneously using a fast Adams method 
differential equation solver.6 This method was chosen 
because it was readily available as a fully tested and 
documented subroutine. In using this subroutine, ini- 
tialization of the integration is trivial and accuracy 
is controlled automatically by specifying (with two 
constants) the required accuracy per integration step. 
Thus, using the Adams method integrator saved consid- 
erable time in writing and testing the program. It is 
not, however, the fastest integrating algorithm we 
could have used. Being a predictor-corrector type 
algorithm, it is about a factor of two slower for the 
same accuracy than the simple algorithm employed by 
Haber, in the case where K,(and Ky) is a continuous 
function of s. Additional time is lost whenever K, is 
discontinuous. 

Our method of computing the space charge force is 
essentially the use of the Green's function, as implied 
by equation (1). We chose this method because of its 
simplicity and a (mistaken) belief that the number of 
trajectories needed to accurately simulate a real beam 
would be small enough that the Green's function calcu- 
lation would be faster than the alternative method of 
using a Poisson solver technique. The computing time 
of our method is proportional to M2 whereas the com- 
puting time of the Poisson solver method is proportion- 
al to m log m where m is the number of mesh points of 
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the grid on which Poisson's equation is solved. The 
remaininq advantaqe of the Green's function method is 
that it can harldle problems in which the beam size 
changes by large factors with no additional effort 
whereas in such cases the Poisson solver will be inef- 
ficient (due to unnecessarily large m values) unless a 
method for chansinq the mesh-size-as the beam size 
changes is built into the program. 

The major difficulty in representing a real beam 
with a relatively small number of trajectories is the 
collisional effect. This effect requires that M be 
large and that the singularity in the space charge 
term of equation (1) be removed. We do this by re- 
placing (xi-xj)' t (yi-yj)2 z d?,i by r2 whenever 1 
d;i < r2. We choose r2 = L M xmaxh Y,,,(s)~ where C 

is-an adjustable smoothing parameter of order unity. 
Our results in all cases studied are quite insensitive 
to the value of C. Note that the collisional effect 
is just as important in the Poisson solver technique 
as in the Green's function method for calculating'the 
space charqe force. As an example, we have calculated 
transport through a thin lens FODO system having 
phase advance pc = 90° per ccl 1 depressed to 1-I = 30" 
by the space charge force. With M = 1500 we find 
"secular" fractional emittance growths' of 4.6 x 1O-3 
per cell with C = 1 and 3.5 x lO-3 with C = 3. These 
values bracket the curve of fiaure 6 in reference 1. 
which gives the secular emittance growth rate for the 
same system in a Poisson solver calculation. The 
effective smoothinq parameter in the latter calcula- 
tion was quite cloSe't0 our C = 1 case. 

Most of the simulations we have performed thus 
far have been for cases where the input beam is 
matched to the system. Matching is done by an itera- 
tive technique usinq the K-V envelope equations as an 
option in our main proqram. The user quesses the ini- 
tial beam envelope size xmax and ymax and the envelope 

drc dy 
slopes xlmax = -e and y',,, = -.$.f%. For a given 

set of input parameters (energy, current, emittance = 
E, etc.) and a defined structure for one cell of the 
transport system, the program then varies xmax, ymax, 
x'max, and Y'max until all four parameters reproduce 
within the requeqited accuracy after one cell. The 
variation is restricted to a two-parameter search by 
making use of the symmetry of the system: the starting 
point of the system must be either a point where the 
phase ellipses are upright in both planes (xmaxlx'maxl 
= ymaxly'maxl = ~:/'II) or a point where xmax = ymax, 
X'max = - Y'max, which always exists for a periodic 
system due to time-reversal invariance. Having 
obtained the matched beam envelope parameters, the M 
initial trajectory coordinates (xi,xpi,yi,ypi) are 
chosen at random from the K-V distribution using stan- 
dard Monte Carlo methods. Other distribution func- 
tions are possible, but we have not found a unique 
procedure for beam matching for non-K-V distributions. 
Jn case the initial beam ellipse is not upright, we 
first populate an upright ellipse with semiaxes 
E//x'~~~\TT in the spatial coordinates and /x'maxJ in 
the momentum coordinates, and then perform the drift 
transformation 

xi -+ xi + Dx'. 
1 I 

Yi + Yi - DY’i 

x’ -f x’ i i 

Y'i * Y'-i 

(2) 

1 I 0 
where D = t p-&-i-[ J xiax - (ch x 'max)i, 

which preserves the emittance while reproducing the 
beam envelope obtained in the matching process. We 
sometimes make use of the inverse of this transforma- 
tion in displaying the phase-space plots resulting from 
a calculation. The transformation to an upright posi- 
tion increases the visibility of any distortions of a 
non-upright ellipse, and removes contributions to the 
moments of the beam distributions (i.e. quantities of 

the form <(~,)~(xp~)T) due solely to the non-upright 

position of the ellipse. The drift distance 0 in 
equation (2) can be obtained from equation (3) only in 
cases where the beam envelope is close to elliptical in 
shape, For non-K-V distributions the rms emittance 
(which is equal to the envelope emittance for a K-V 
distribution) is used and values of xmax, x'max, etc. 
are found from the actual distribution in applying 
equation (3). 

Results 

We present here a few examples of calculations 
performed with our program, in order to demonstrate the 
validity and power of the program. Although our cal- 
culation is done with physical variables (energies, 
currents, particle species and charge, etc.), we know 
that the space charge transport problem is scalable* 
and thus fully described by the single-particle phase 
advance per cell at zero current, uo, and the phase 
advance per cell, i-1, with space charge. 

Our first example is transport through a symmetric 
FODO lattice with p. = 90", p = 30". This case has been 
studied by Haber also. I35 We regard the good agreement 
between his results and ours as verification of the 
validity of the numerical simulation approach, since 
the two calculations are completely independent and 
quite different. In figure 1 we show the mean emittance 
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1. Emittance growth due to space charge effect in a 
FODO transport line. We plot the geometrical mean 
of the x-plane and y-plane normalized emittances, 
as a function of the number of cells traversed, 
The solid curve is obtained when the quadrupole 
magnets are approximated by thin lenses, the dots 
for finite quadrupoles filling one-half of the 
available space (p = 2). 

F = kXEy)“*, as a function of the number of cells 
traversed. For the first ten cells, we see a very slow 
increase in E due to the (spurious) collisional effect 
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2. The x-xp projection of the beam phase space at the 
point s = 17 for the calculation of figure 1. 

(here M q 1500), followed by a more rapid increase in 
cells 10 to about 40, and then a resumption of the slow 
collisional growth. The similarity to figure 1 of ref- 
erence 1 is evident. In figure 2 we show the x, xp rx' 
projection of the phase space after 17 cells. The 
four-armed structure is quite similar to that displayed 
(for cell 20) in fiqure 2 of reference 5. With our 
program we are able to compare the thin-lens approxi- 
mation used by Haber to the same calculation using 
finite-length quadrupoles. Figure 1 shows that the 
thin-lens and thick lens calculations are almost indis- 
tinguishable, Specifically, our thick-lens result is 
for the case where the quadrupole fields fill 50?; of 
the available space. In this calculation the quadru- 
pole fields terminate abruptly. It is quite feasible 
to insert in our calculation fields which fall off 
realistically, including the non-linear forces which 
result. Although we do not expect significant changes 
for the types of calculations presented here, we do 
intend to make this modification to the program in the 
future. 
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3. Geometry of the focusing structure for the planned 
cesium beam experiment. The field gradient in 
the quadrupoles is 0.823 kG/cm. Beam parameters 
are given in the text. 

The second example is intended to verify our cal- 
culations experimentally, and to assist in the design 
of a planned experiment. This experiment9 consists of 
the transport of a high-current, one MeV Cstl beam 
through eight cells of a FODO system with a zero cur- 
rent phase advance of uo = 90' per cell. The asymme- 
tric design of the focusing structure, shown in figure 
3, and the limitation to eight cells is determined by 
available hardware. In the absence of a design for 
matching optics between the accelerator and the trans- 
port line, and between the transport line and the 
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4. Projections of the beam phase space in the x-xp 
plane for the cesium beam simulation. (a) Initial 
matched distribution. (b) Calculated distribution 
after eight cells. (c) Distribution after trans- 
formation of equation (2) is applied, and the 
horizontal scale expanded, The solid curve is the 
boundary of the initial distribution in this coor- 
dinate system. 



final emittance-measuring instrumentation, we have 
calculated the matching condition at the center of the 
longer drift space, and carried the calculation only 
to the end of the eighth cell. We assume a beam cur- 
rent of 0.35 A which depresses the phase advance to 
lo = 19.3", an emittance of 601~ mr cm, and a K-V dis- 
tribution. Repre:;enting the beam with M = 1500 par- 
ticles, we observe a smooth rms emittance growth rate 
of 1.7 percent per cell for the first six cells, fol- 
lowed by a more rilpid growth in the last two cells. 
We believe that most of the observed growth is the 
same spurious collisional effect seen in the first 
example because the rate is approximately doubled if 
we reduce M by a .factor of two, and because of the 
larger tune shift in this example, together with some 
rough estimates of the scaling laws for the collision- 
al effect as a function of time. The additional emit- 
tance growth of - 12% in the last two periods is prob- 
ably real, but ma;%/ be too small for definitive exper- 
imental verification. However, the distortion of the 
phase space distribution, shown in figure 4, is large 
and should be clearly observable in the experiment. 

Future Work 

The main goal of this work at present is to 
determine if the predictions of our numerical simula- 
tions are experimentally verified. To make the com- 
parison with experiment definitive two modifications 
of the present version of the program are needed. The 
first is to include realistically the fringing fields 
of quadrupole magnets. The required modifications are 
straightforward. They should not increase the execu- 
tion time of the program significantly, nor do we ex- 
pect the non-linear effects of the quadrupole end 
fields to qualitatively alter our results. The second 
modification required is the use of non-K-V distribu- 
tions. Specification of such distributions is not 
difficult, except that there is no unique definition 
of matching for arbitrary distribution functions. 
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