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Summary 

Transverse beam behaviour of an intense beam through 
long periodic systems is reviewed critically. In view 
of the uncertainty about the proper choice of a dis- 
tribution function the applicability of a hydrodynam- 
ical approach is discussed, Starting from a laminar 
beam, structure resonances and their shift by finite 
temperature are introduced as hydrodynamic features. 
The VldSov treatment brings in additional structure re- 
sonances and entirely new features, like velocity space 
instabilities, if a loss-cone distribution (for instance 
K-V distribution) IS chosen. The relevance of these in- 
stabilities for beam transport considerations is briei- 
ly discussed. 

1. Introduction 

The application lf accelerators for heavy ions as driv- 
ers for inertial confinement fusion has necessitated 
the study of beam transport phenomena in a regime where 
space charge eff(?cts are so strong that single particle 
effects are dominated by coherent oscillation phenomena. 
A theoretical description of the transverse beam be- 
haviour requires knowledge of the distribution function 
in four-dimensional phase space as starting point for a 
stability ana1ys.I.s. The question what the velocity dis- 
tribution in a beam from a thermal source looks like is 
difficult to answer, which makes stability analysis 
difficult. While emission at a thermal source occurs 
with local Maxwellian velocity distribution the actual 
velocity distribution at a position further downstream 
is modified by finite (transverse) geometry effects 
leading to non-Maxwellian modifications of the distri- 
bution function. The highly artificial K-V (microcanon- 
ical) distributicn is the only case for which the prob- 
lem of transport through a periodic channel has been 
solved analytically I, 

2. Vlasov and Hydrodynamlcal Approaches 

Lawson 2 has shown that optical and hydrodynamical des- 
crlptions are equivalent if envelope oscillations of a 
uniform beam are considered (in paraxial approximation, 
which is assumed llere) . A complete description of a 
beam as collisiontess nonneutral plasma requires the 
use of the Vlasov equation. This equation is difficult 
to solve in the beam case and one may ask under what 
conditions it can be replaced by the much simpler hy- 
drodynamic equations, which govern local macroscopic 
quantities obtained by averaging over the velocity 
Space. Since the hydrodynamical approach is also more 
amenable to direct. physical interpretation, it would be 
desirable to use it whenever possible. 

For a formal derivation 3 we start from the Vlasov 
equations for electrostatic oscillations 
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where the linear external focussing force is given by 

K E {K (s)x~ Ky (s)y} (Kx y(s) is ___ for quadrupoles - X I 
(BP) 

for solenoids in the co-rotating Larmor 

frame) and time is replaced by the distance s = vt, 
with v the longitudinal velocity. Averaging of (1) 
over the velocity space yields 
an 
- -t V* (nV) = 0 (continuity equation) 
as - - 

(3) 

av 1 

nL + n(V*V)V t - C*P - --- -- (4) 
2s M transport) 

with the density n f /fdvxdvy, the fluid velocity 
; f ;-;i{xfdvxdv, and the pressure tensor components 

ij - vi - vi) (Vj - Vj )fdV,dvy, which satisfy an 
equation of state, with d/ds a total derivative, 

d a / av,. 
- Pij + 1 - Q, 

Ilk 
L,P 

ds k ax, + ;jpqax 
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The third moments Q 
fdvxdvy , 

ljk ’ /(‘Jl - L’l) (“1 - ‘+‘I) CVk - vki ’ 
which describe the heat flow, are again con- 

nected with fourth moments,and so on. The hydrodynam- 
ical approximation requires that Qijk be small so that 
it can be neglected in (4) and we obtain a closed set 
of equations. This is strictly justified only if f is 
quadratic in (vx - Vx) and (vy - Vy) , hence heat flow 
is suppressed. In general, thermal effects can be des- 
cribed by the pressure term in an average sense only. 
A beam close to the space charge limit, however, may 
support electrostatic oscillation much faster than the 
transverse “thermal” oscillation (w 2 wp >> (r, with wp 
plasma frequency and 9 transverse tune). Hence, heat 
flow is negligible for fluctuations on such a time 
scale. 

3. Matched Beam Solutions 

Besides stability considerations, the entrance condi- 
tions of the beam have to be matched to a given trans- 
port channel to permit optimum transmission. This is a 
straightforward problem only in a continuous focussing 
channel, or in a periodic channel if it suffices to 
follow the envelope motion so that one can define a 
solution with the same period as the channel. In case 
of nonuniform space charge density and periodic focus- 
sing the envelope is inadequate. We characterize the 
following situations: 

Continuous Solenoidal Focussing (K~ = K 
Y 

= 1/(4p2,! = a2) 
0 

From a theoretical point of view we can use an arbitrary 
function fo(H) of the Hamiltonian as constant of motion 
in four-dimensional phase space and obtain a stationary 
solution of (l), provided that we have solved Poisson’s 
equation selfconsistently according to 

v2$ = -41iq/fo(H(@)dvxdvy (6) 

In this time-independent case the hydrodynamic equation 
(4) leads to an equivalent integral equation if we de- 
fine a temperature according to 

P(r) = n(r)kT(r) (7) 

and choose T(r) appropriately. It is easy to verify that 
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in hydrodynamic terms the K-V distribution f, N 6(H-Ho) 

is a fluid with uniform density, isotropic pressure 
P =p = 

i% ly 
P(r) and a temperature that drops quadrat- 

$!om the center of the beam. The Maxwellian beam 
with fo N expl, ‘-H/kT) can be obtained from equations 
(2) - (4), if we set T(r) f T. 

Periodic Focussing 

If we allow for a periodic variation of the focussing 
strength 
rigorous 

K = K(S) 

solution 
in a solenoid 
of equ.(l) is 

system the only known 
the K-V distribution 4 

which leads to uniform density and an envelope subject 
to the well-known nonlinear equation 

8 2q‘N 
a” = -K(s)a + (8) 

where C is the emittance and N the line density. From 
our observatil>ns in section 2 it is evident that the 
K-V solution has zero heat flow Q and can be 
as hydrodynamic flow with isotropic pressure. 

looked 
Hence 

at 

equ. (8) can be derived also from the hydrodynamic equa- 
tions (2) - (5) with V = ra -I aa/as and this estab- 
lishes the equivalencerof emittance and pressure rsp. 
temperature : 

~~ = 2 a2(s)T(0,s) f const. 

M 
(9) 

which expresses the constancy of the product of beam 
area and peak temperature (T(r,s) = T(O,s) (l-r2/a2) I. 
A matched beam is then defined 
with the same periodicity as K 

solution of equ. (8) 

If we allow for nonuniform density, solution of 
equation ( 1) becomes extremely dif f icul 
an invariant quantity, like emittance, is 

Definition 
no longer 

straightforward, since the density in each two-dimen- 

of 

sional projection of the phase space is nonuniform. We 
want to investigate some properties of the hydrodynamic 
approximation. For a rotationally symmetric beam we re- 
write equations (2) - (5) in cylindrical coordinates 
and obtain wl.th Pro = 0 

d av V 

- ‘rr 
t 3 -- rp GPrr=O 

ds ar rr r 
(10) 

$ pee + 2 pee 
3 

t-VP 
r r88 

=o 

V, (r, s) is no longer linear in r, hence we obtain ani- 
sotropic pressure, and with the continuity equation we 
find the adiabatic law 

d 
- 

ds 
(11) 

which can be expressed also in terms of an aniSOtrOpiC 
temperature Tii = (nk)“Pii. Evaluation at the beam 
center, where V = 0, hence d/ds = a/as, yields 

r 

f const. 

r=O 

(12) 

as generalized version of condition (9). Equation (12) 
gives a macroscopic quantity which is constant along 
the channel and replaces the concept of constant emit- 
tance in this more general situation. We observe that 

radial beam motion is not self-similar in genera1,i.e. 
the radial profiles of all macroscopic quantities are 
changing with s. 

Validity of the adiabatic law is based on negli- 
gible heat flow. As we mentioned above, this is a rea- 
sonable approximation, if beam fluctuations induced by 
the periodically varying focussing are rapid compared 
with thermal motions. Therefore we suggest as nontrivial 
application of the hydrodynamical equations the regime 
of strong tune depression by space charge and small 
phase advance of a particle per focussing period 
(~‘/a& << 1 and u’ << 7). 

4. Stability Considerations 

The question of stability of a given beam flow appro- 
priately matched to a transport channel requires inves- 
tigation of all possible eigenmodes. The stability re- 
sult may depend very sensitively o; the choice of the 
unperturbed distribution function . In view of our un- 
certainty what a realistic unperturbed distribution 
should be it is of interest to first inquire in the 
stability properties of the hydrodynamical model, start- 
ing from the simplest case. 

Laminar Flow 

If thermal effects are neglected we obtain laminar or 
Brillouin flow, which is described by the hydrodynamic 
equations with P f 0. For K(s) E K. external fOCuSSing 
and space charge defocussing are equal. The matched ra- 
dius is a, = (2q2N/ (Mv~K,) ) l/2 and the plasma frequency 
w = 4nq2n/(Mv2) is given by I.$ = 2Ko. Small oscilla- 
t?ons E (l) N ei@ obey 

io2 (v*E (1)) 
41iq2 

= 7 (p (nz(‘))) (13) -- 
MvL 

which yieldsthe dispersion relation 

tJ12 2 =bl for body oscillations (n (‘I 3 0 for r2 
P 

(1) 
(14) 

$ = u2/2 for surface oscillations (n 
P 

=0 for r2 < ai) 

In a periodic solenoid channel the amplitude 
oscillations is found subject to the equation 

A”(s) t a(s) A(s) = 0 (15) 

with a (s) f K(S) t l/2 w?(s) for body OScillatiOns and 
a (s) S K(S) for surface &cillations, where w:(s) S 
4q2N/(Mv2a2(s)) is defined by a periodic envelope solu- 
tion of equ. (8) with E = 0, and A E /(x/a(s))kEx( 1) dxdy 
is any nonvanishing moment of the electric field per- 
turbation. Equ.(15) is of Hill’s type with solutions 
A = eiusa(s), where w(s) has the period of K(s). It can 
be replaced by the simpler Mathieu equation if we con- 
sider a small harmonic variation K(s) = K, + K cos(xs), 

hence for body oscillations a (s) = 2Ko t KI ( x 2 - 4KO)/ 

(A2 - 2K,).cos (As) , The harmonic content in a(s) can give 
rise to parametrically driven structure resonances if 
the frequency 1 is twice the natural frequencies tip or 
w /fi. 

P 
As usual, we express the stop bands in terms of 

o,, zero intensity phase advance per period of the 
structure, 

fl K1 
laA-?~l s:“land 10~ - 8; ,$ll;; (16) 

4K 
0 0 

for the surface and body oscillations, respectively; 
corresponding growth rates are n/S l Kl/~o l wp and 
l/12 l K /K 1 o ’ w . 

P 
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Finite Temperature (Hydrodynamic) Effects case of the azimuthally symmetric nonuniform body os- 
cillations we obtain identical eigenfunctions, while 

While a cold beam allows for only two natural oscilla- the eigenvalues agree, if u2 is small compared with ti2 
tion frequencies, wp and w /fi, thermal effects remove so that oscillations are adiabatic and the equation o ‘1 
this degeneracy. For simplfcity we have investigated state is justified. This supports that the hydrodyna- 
the uniform density beam with finite pressure and find mica1 description of nonuniform beams is adequate if 
the following hydrodynamical eigenfrequencies slj. fluctuations are rapid compared with the single partic- 

1. Envelope modes, U: 1 = tiz t 4a2 and w2 = 

iwsr2 c~~~~ (r < ) 

$2 t 402, le tune us 
iws 2 ’ The new phenomena that arisewith the microscopic 

with $C 1 = Ae r and $2 0 = Ae =a Vlasov treatment can be summarized as: 

2. Azim~thally symmetric (I = 0) nonuniform body oscil- 1. Additional structure resonances The K-V distribution 
allows for nonsyrmnetric electric field perturbations to 

lations, w2 
O,j 

= b~i t 4Xjj202, with Xj slightly depend- arbitrary m and hence a higher dimensionality of struc- 

ent on j (X = 1.38, 1.44, 1.47, . . . for j = 2, 3, 4...) ture resonances. Recently, parametric resonance of a 

” 2j + b ,2(j-l) + 
third order mode (m = 3, j = 0; see Fig. 1) has led to 

and 4 = AelWs (r 
O,j 

bj) (r ,$ a) 1 . . . the suggestion aA 5 60° to avoid it 7. Since this mode 

Here, cl is defined as (Kg - w2/2)&nd easily identified depends on the presence of heat flow (a nonhydrodynamic 

as single particle tune, henc’! u = u. = kc0 for zero in- ef feet) , it is unclear how harmful it would be for a 

tensity and 5 = 0 for laminar flow. We observe that the distribution quite different from the K-V. 

envelope mode $2 ,C was the only nonsymmetric mode we 2. Velocity space instabilities.Independent of inter- 

have found from the hydrodynamic equations. We conclude ruptions in the focussing strength the K-V distribution 

that higher order nonsymmetric modes require the effect exhibits unstable modes with ReWrO and I~JPO if u-+0 l. 

of heat flow, which is suppressed in the hydrodynamical The loss-cone in the energy distribution is responsible 

model. The nonuniform symmetric body oscillations are for the occurrence of oscillations, which carry negatiw 

characterized by {density ripples inside the beam and signal energy defined by ‘ti(t)=(8n?l[d(wE)/dw] _ (r-$82 ard 
W4nj 

anisotropic pressure Prr $ P86. yield internally drive; instabilities by coupling with 

Again periodically varying focussing allows for positive energy modes . Onset of these K-V instabili- 

structure resonances. Since finite temperature increases ties occurs if U/U,%.39 l. Eigenmode calculations for 

the mode frequencies, we obtain stop-bands that are different distribution functions indicate that it suf- 

shifted towards shorter focussing periods (i.e. smaller fices to partially fill up the K-V loss-cone in order ti 

aA), depending on m, j. In addition to the parametric make these instabilities insignificant 5, Hence, there 

case there may also appear structure resonances with are strong reasons to suppose that beams from a thermal 

integral or sum or difference relations. In case of source are not affected by this mode, 

growth, density fluctuations (j > 1) are accompanied by 3. Landau damping The stabilizing effect of phase mix- 

fluid velocity fluctuations which reduce beam quality. ing may be considerable, if there is a sufficiently 
broad distribution of single particle frequencies in the 

Non-hydrodynamic Sffects unperturbed beam. The K-V beam has no Landau damping, 
and for other beams the effect can perhaps be investige 

The Vlasov treatment based on a distribution of par- ed through computer simulation. 

titles in configuration and velocity space extends the 5. Conclusion 

possible electric field qenmodes and allows, in prin- Hydrcdynanical equations with anisotropic pressure can be 

ciple, for a higher dimensionality of eigenfrequencies a reasonable extension of the simple envelope equations 

than the fluid treatment. Gluckstern 6 has derived the (which are also hydrodynamical), if the heat flow term 

dispersion relation for the K-V distribution with con- is negligible. This appears justified for uniform densi- 

tinuous solenoid focussing. Despite of the unrealistic ty in the beam (as the envelope equations require); or, 

character of this distribution it is interesting to with nonuniform density, if oscillations are rapid on 

look at the eigenErequencies dy$ with m the azimuthal the time scale of thermal motion, like in a weakly non- 

and j the radial mode numbers (m, j=O, 1,2.. .) and n=l., , laminar beam (rsp.strong tune depression). In this limit 

jt (mtl) /2 for odd rn, n=l.. . jtm/2 for even m. structure resonances of the hydrodynamic plasma oscilla- 

- - - Hydrudyn modes tions require that aA be sufficiently below the value 
0 I4 struck res 71/E, where the resonance bands of cold plasma oscilla- 

- K-V modes tions are accumulated. For UA<90° one also avoids the 
stop-band of the envelope mode, but further study is ne- 
cessary to determine whether higher order mode resonances 
are of importance. The numerous additional resonances of 
the K-V analysis must be judged similar, though at least 
a third order mode with large growth rate can be avoided 
if 8A<60° 7. Velocity space instabilities (which call 
for 0/0,?0.39 in the K-V case) are inappropriate to de- 
fine a threshold for tune depression, because a loss- 
cone distribution is unrealistit in this connection. The 
question whether stability considerations set a pronoun- 
ced lower limit in U/a0 at all should be investigated by 
computer simulation. Non-paraxial effects may have to be 
included to get reliable results. 
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