IEEE Transactions on Nuclear Science, Vol. NS-26, No. 3, June 1979

A MINUS-I QUADRUPOLE SYSTEM FOR CONTAINING ABERRATION-CORRECTION OCTUPOLES*

Stanley Fenster ${ }^{\dagger}$

Abstract

Octupoles may be used to correct the third order spherical aberration of quadrupole transport systems. Crosstalk in the coupling of an octupole placed at a given point causes it to add a term with the wrong sign in the y-channel if it has the right sign in the x-channel, thus severely reducing efficiency. It is of ten convenient to utilize a special correcting section insertion which is seen as a +I transfer matrix by the first order focussing. Within point-to-point thin lens optics we give two-parameter systems with 16 magnets having locations with large S_{x} where $S_{y}=0$ and vice versa for octupole placement.

The problem is to set up a -I quadrupole system which contains two special locations. At the first, S_{x} is large and S_{y} is zero; while at the second the reverse is true. ${ }^{Y}$ Octupoles are placed at these locations and make corrections free of channel crosstalk. The layout is:
-I System

Section 1
subsection $1 A$
part 1 Aa
part 1 Ab
subsection $1 B$
part 1 Ba
part 1 Bb

Section 2
subsection 2A part 2Aa
part 2Ab
subsection 2B
part 2Ba
part 2Bb
The basic module for the lAa part is a five element OFODO sequence of drift spaces and thin lenses and part lAa consists of two such modules notated in English and Greek respectively as

$$
\text { 1Aa: } \underbrace{\sum \mathrm{PmQn}}_{\substack{\text { one module } \\
1 \mathrm{Aa}}} \underbrace{\lambda \pi \mu \tau v}_{\begin{array}{c}
\text { one module } \\
1 \mathrm{Ab}
\end{array}}
$$

For example, the second element (P) after the source has transfer matrix

$$
\left(\begin{array}{cc}
1 & 0 \\
-p & 1
\end{array}\right)
$$

in the X-chamel. Each module is one of the modes:

$$
\begin{array}{ll}
\mathrm{PP}=\text { point-to-point } & =\left(\begin{array}{ll}
x & 0 \\
x & x
\end{array}\right) R_{12}=0 \\
L P=\text { parallel-to-point } & =\left(\begin{array}{ll}
0 & x \\
x & x
\end{array}\right) R_{11}=0 \\
P L=\text { point-to-parallel } & =\left(\begin{array}{ll}
x & x \\
x & 0
\end{array}\right) R_{22}=0 \\
L L=\text { parallel-to-parallel } & =\left(\begin{array}{cc}
x & x \\
0 & x
\end{array}\right) R_{21}=0
\end{array}
$$

*Work supported by the U. S. Department of Energy
†Argonne National Laboratory, Argonne, IL 60439 USA

For the present model we have chosen

$X_{1 A}$			PL	and	LP
$Y_{1 A}$			$P P$	and	LL
$X_{1 A a}$	LL	$Y_{1 A a}$	LP	and	PL
$X_{1 A b}$	LP	$Y_{1 A b}$	LP	and	PL

This decomposition makes the problem tractable because the one LL zero of $X_{1,}$ and the two (PL and LP) zeroes of $Y_{1 A a}$ are easy to solve. By matrix multiplication

$$
\begin{aligned}
(\mathrm{LP} \text { and } \mathrm{PL}) \cdot(\mathrm{LP} \text { and } \mathrm{PL}) & =\mathrm{PP} \text { and } \mathrm{LL} \\
\mathrm{Y}_{1 \mathrm{Aa}} \cdot \mathrm{Y}_{1 \mathrm{Aa}} & =\mathrm{Y}_{1 \mathrm{~A}} \\
\mathrm{LP} \cdot \mathrm{LL} & =\mathrm{LP} \\
\mathrm{X}_{1 \mathrm{Ab}} \cdot \mathrm{X}_{1 \mathrm{Aa}} & =\mathrm{X}_{1 \mathrm{~A}}
\end{aligned}
$$

Thus $\mathrm{Y}_{1 A}$ is automatically PP and LL, while X_{14} needs to have one condition satisfied ($\left.\mathrm{X}_{1 \mathrm{~A}}\right)_{22}=0$) to become LP and PL. We should also like to specify, at the end of subsection 1A, the value of $S_{x}\left(=\left[X_{1 A}\right]_{12}\right)$. A count shows that $3+3+1+1=8$ restrictions have been put on the 10 parameters in the two modules of 1 Aa leaving two (mQ and $\pi \mu$) free. One finds, with notation

$$
\begin{aligned}
& a=m Q \\
& b=\pi \mu
\end{aligned}
$$

the expressions

$$
\begin{aligned}
& \ell=\frac{b\left(1-a^{2}\right)\left(2-b^{2}\right) S_{x}}{(1+b)\left(1-b^{2}\right)\left(1+a+2 a^{2}\right)} \\
& P=\frac{\left(1+a+2 a^{2}\right)\left(1-b^{2}\right)(1+b)}{2 a b(1+a)\left(2-b^{2}\right) S_{x}} \\
& m=\frac{2 a^{2} b\left(2-b^{2}\right) S_{x}}{\left(1+a+2 a^{2}\right)\left(1-b^{2}\right)(1+b)} \\
& Q=\frac{\left(1+a+2 a^{2}\right)\left(1-b^{2}\right)(1+b)}{2 a b\left(2-b^{2}\right) S_{x}} \\
& n=\frac{b\left(2-b^{2}\right)(1+2 a) S_{x}}{\left(1+a+2 a^{2}\right)\left(1-b^{2}\right)(1+b)} \\
& \lambda=\frac{\left(1-b-b^{2}\right) S_{x}}{(1+b)^{2}(1+a)} \\
& \pi=\frac{(1+b)(1+a)}{b S_{x}} \\
& \pi=\frac{b^{2} S_{x}}{(1+a)(1+b)} \\
& \pi(1-b) S_{x}
\end{aligned}
$$

$$
\begin{aligned}
& v=\frac{(1-b) S}{1+a} x \\
& S_{y}=\left(Y_{1 A}\right)_{12}=\frac{b(1+a)\left(2-b^{2}\right) S_{x}}{\left(1-b^{2}\right)\left(1+a+2 a^{2}\right)}
\end{aligned}
$$

where S_{X} is the peak of the X-channel sinelike function. The system allows all a, b choices within the limits

$$
\begin{aligned}
& 0<a<1 \\
& 0<b<\frac{\sqrt{5-1}}{2}=0.618034
\end{aligned}
$$

to keep all drift distances positive.
For a trial system it was found

$$
\left(S_{x}\right)_{\max }=\left(S_{y}\right)_{\max }=30 \mathrm{~m}
$$

was adequate to keep the octupole strength near $1 \mathrm{~T} / \mathrm{m}$. As an example we have chosen

$$
a=0.85 \quad b=0.20
$$

In an attempt to get a small total length

$$
\mathrm{L}=4(\ell+\mathrm{m}+\mathrm{n}+\lambda+\mu+\nu) .
$$

We find (MKS units)

$$
\begin{array}{ll}
\ell=0.85973117 & \lambda=8.5585586 \\
P=0.10263132 & \pi=0.37000000 \\
m=4.4767956 & \mu=0.54054056 \\
Q=0.18986795 & \tau=0.38541667 \\
\mathrm{n}=8.36494947 & v=12.972973
\end{array}
$$

The resulting cosinelike and sinelike trajectories are listed below

s	C_{x}	S_{x}	C_{y}	S_{y}
0.0	1.0	0.0	1.0	0.0
0.85973117	1.0	0.8597311	1.0	0.85973117
5.3365268	0.54054056	4.9415152	1.459	5.7315382
13.701476	0.54054056	20.416672	0.0	5.7315382
22.260035	0.54054056	36.250005	-1.4932394	5.7315382
22.800575	0.43243243	30.000000	-1.8861971	6.8778458
35.773548	0.0	130.000000	-1.8861971	0.0

$$
\begin{aligned}
& X_{1 A}=\left(\begin{array}{cc}
0 & 30 \\
\frac{-1}{30} & 0
\end{array}\right) \\
& Y_{1 A}+\left(\begin{array}{cc}
-1.8861971 & 0 \\
0 & -0.53016733
\end{array}\right)
\end{aligned}
$$

Octupoles are placed at 1 A and 2A. A simflar type of problem was solved for a beam rotator.

Alternate solutions are possible. One needs to consider only subsection 1 A , which is divided into parts $1 \mathrm{Aa}, 1 \mathrm{Ab}$, and repetitions as specified above. A part a or b may contain two or three magnets. There are sixteen cases, based on the following matrix multiplication table:

$P L \cdot L P=L L$	$L L \cdot P L=P L$
$P L \cdot P P=P L$	$L L \cdot L L=L L$
$L P \cdot P L=P P$	$P P \cdot L P=L P$
$L P \cdot L L=L P$	$P P \cdot P P=P P$

In the list below, N indicates the number of magnets per module. The example ${ }_{2}$ given above corresponds to the first line of this list.
$\begin{array}{lllllll}X_{A b} & X_{A a} & Y_{A b} & Y_{A a} & N_{A b} & N_{A a} & X_{A}\end{array} Y_{A}$

References

1. S. Kowalski and H. Enge, "Beam Rotator", Proc. Fourth Int'1. Conf. on Magnet Technology, CONF720908, Brookhaven, 1972.
2. Karl Brown has emphasized +I sections as sextupole sacs.
