
IEEE Than~ncXionb on UuCeeah Science, VaLEIS-24, Uo.3, June 1977 

FAST OPTIMIZATION TECHNIQUES APPLIED TO LINEAR AND NON-LINEAR 
LATTICES OF ELECTRON STORAGE RINGS AND ACCELERATORS* 

S. Peck 
Cornell University 
Ithaca, N.Y. 14853 

Sunary 

This paper describes a general interactive 
computer program, ZEN, developed to determine linear 
focussing parameters for CESR, the Cornell electron 
storage ring, and application of similar methods to 
non-linear elements. It is particularly suitable for 
lattices of electron accelerators, especially those 
with large numbers of independently variable focussing 
parameters. ZEN is a descendent of the linear lattice 
calculating program, MAGIC, Ref. 1, having improved 
interactive capability and new minimization routine, 
MINOP Ref. 2. 

Introduction 

The CESR magnet ring is to be roughly concentric 
with the Cornell synchrotron and larger in radius by 
about 1.6 meters. The geometry is fixed by the 
existing tunnel and by the requirement that the 
CESR orbit must bulge out away from the synchrotron 
in one interaction region area to provide room for 
large experimental apparatus. The basic design 
philosophy, then, has been to work with fixed 
component disposition and to optimize machine 
performance by variation of focussing parameters. For 
this reason, ZEN has no convenient means for adjusting 
component disposition. In the beginning a few inter- 
actions of basic cell lengths and low beta insertions 
were required to find a workable lattice over the 
required operating energy range (1.5 to 10 GeV), and 

luminosity range (1032(E/8 GeV)2cm-2sec-1). Because 
of the low superperiodicity of the ring, (2), no 
attempt was made to design normal cells and match 
them with transition sections, but rather an entire 
half ring was treated as a unit which has to meet the 
optical requirements. Looked at another way, the 
whole lattice is merely a 49 quadrupole matching 
section between the two interaction regions. The 
components in the ring are of course laid out in as 
regular a fashion as possible. 

The Program 

Central to the optimization process is F, the 
'Figure of Merit', a function of the quadrupole 
strengths, which have been selected by MINOP on the 
basis of preceeding function evaluations. The 
function quantifies the important lattice properties 
by the weighted sum of squared differences between 
the momentary and desired value of each term. 
Selection of the weights is an important component 
of user-program interaction. 

Three preliminary calculations are necessary 
before findins the sum F itself. The first is 
performed only once at the start of an entire set of 
optimizations; in it, the thick lens linear matrices 
for the sequences of bend and drift components 
between each pair of quadrupoles are multiplied. 
Second, for each evaluation of F, the transfer matrix 
for l/2 the ring (one superperiod) is found by 
repeated multiplication of thick-lens quadrupole 
matrices with the 'bend-drift' matrices found 
previously. This complete matrix then provides 
starting values for beta and eta at one interaction 
region. These are propagated through the same sets 
of matrices, and a list of beta and eta at each 

quadrupole location is created. 

Simultaneously, horizontal beta, eta, and their 
derivatives are traced through individual bend elements 
in a streamlined fashion to compute the synchrotron 
intesrals. This phase of computation, which uses, 
wherever possible; invariant terms computed only once 
per optimization cycle, still consumes about l/2 of the 
total CPU time. 

Having completed these preliminaries, calculation 
of F is straightforward. As in MAGIC, desired values 
for beta and eta at the interaction points may be 
specified, but initial experience indicated a decreased 
weight for small errors was desirable. Otherwise, with 
a large weight on (for example) eta at the interaction 
region, MINOP would find a minimum with eta = 1.00000 
M, and neglect altogether the beam-stay-clear, clearly 
not an optimum, though a local minimum. However, with 
less weight for small errors a solution with all 
desired conditions met and perhaps eta = 1.01, could 
be found, more in keeping with the physical intents of 
the optimization. The actual form used to enter the 
error in vertical interaction region beta is as follows 
(the coefficients are non-critical) weight *(.OOOl* 
errort2 + .l* [error over l%)t2 + (error over 6%)+2) 
similar forms with .02 as second coefficient are used 
for horizontal beta and eta, since their exact values 
are considered somewhat less critical. Attempts to 
use exponential error terms were unreliable, leading 
to unstable lattices in some cases. 

Using the values of beta and eta already found at 
each quadrupole, their maximum values in the 'normal' 
and 'interaction' regions are constrained by adding to 
the figure of merit the weighted square of the excess 
(above a target value) of the greatest value found for 
each. Using the beam size found via the synchrotron 
integrals, the desired beam-stay-clear tolerances are 
enforced in the same way. ZEN also allows specifi- 
cation of beta, and/or eta, at individual quadrupole 
locations, forcing exception to global beta and eta 
limits as appropriate. These may be specified as 
upper or lower bounds, or exact values, as desired. 

A capability in ZEN peculiar to CESR is making 
nearly equal the twiss parameters at two interaction 
regions, since they are not made equal by symmetry. 
Only operating experience will show if this capability 
is essential. 

The beam size due to synchrotron radiation can be 
included in the figure of merit, effectively causing 
MINOP to adjust the relative eta-mismatch and there- 
fore H, the scale of quantum-induced betatron 
oscillations. In the case where wigglers are used to 
control beam size ZEN might adjust them in two ways. 
Provision was originally made for the wiggler exitaticn 
to be included with the quadrupoles as a MINOP- 
controlled variable. When this proved unsatisfactory, 
ZEN itself was allowed to set the wigglers before each 
optimization so as to produce either the desired 
betatron beam size or energy spread. It is usually 
prudent to include a modest limit on maximum eta in 
the lattice to avoid a mix of wiggler and eta-mismatch 
when this is not desired. 

Finally, given information about the beam-stay- 

1878 

© 1977 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.



clear, interaction region beam size and aspect ratio, 
RF power, and operating energy, ZEN has provision for 
the luminosity to be included in the figure of merit. 
However, initial results using the weighted squared 
difference between the computed and desired luminosity 
were disappointing. MINOP generally would stop at a 
local minimum with an unsatisfactory compromise 
between luminosity and aperture requirements. 

Thus, for example, at RF-limited energies, 
MINOP might decrease the vertical beta in the inter- 
action region increasing luminosity at the cost of 
larger aperture in the adjacent quadrupoles, and too- 
rapid variation of crossing envelope. In the low 
energy, non RF-limited domain, it might increase the 
beam current, (and violate stay-clear requirements in 
the normal lattice). 

This impasse was resolved by rendering MINOP 
blind to 'improvements' in luminosity so gained. 
Replacing the nominal luminosity with one decreased 
by a factor equal to ((beta V)/(beta V desired))**2 
when beta V <beta V desired, and another equal to 
((desired aperture)/(aperture))**2 when aperture > 
desired aperture, accomplishes this blinding function 
satisfactorily. MINOP can then improve luminosity in 
a more useful manner. 

ZEN has been successful in finding a wide range 
of optics for CESR, spanning the range of 1.5 to 10 
GeV with luminosity equal to or greater than 

1032*(E/8 GeV)2 for Es8 GeV. 

Execution time for ZEN on a POP-10 (Kl) processor 
may be surnnarized for a typical run: @ 18O.M;; per 
figure of merit evaluation x 50 evaluations per MINOP 
iteration (for 49 numerically determined derivatives) 
x about 30 MINOP iterations per subsolution =370 
seconds, or about 45 minutes for a complete set of 10 
such solutions. ZEN requires no mOre than 27,000 
words of memory. 

Non-Linear Application 

Faced with the problems of adjusting the sex- 
tupoles of the CESR lattice (some 40 per l/2 ring) it 
seemed reasonable to apply the techniques used by 
MAGIC and ZEN. While only two independently adjust- 
able sets of sextupoles suffice to correct the natural 
chromaticity of the lattice, and provide a small 
positive value, making both vertical and horizontal 
NU values increase somewhat for higher momentum 
particles, several problems remain, or are created. 
Three of these problems may be controlled by a figure 
of merit function, similar to, but simpler than, the 
F used by ZEN. They are: 

1. Variation of beta with momentum, both in the normal 
bulk of the lattice, and the interaction region. 
2. Variation of chromaticity with momentum. 
3. Variation of NU with betatron oscillation 
amp1 i tude. 

Of these, (1.) is by far the hardest to control, 
and is not without dangers of its own. Alowing minop 
to set very strongsextupole strengths in order to 
minimize beta variations can cause destructive non- 
linear resonances to be aggravated. Even when (3.) 
is controlled. These resonances may still limit 
maximum stable oscillation amplitudes. This is not 
to say that improvements in overall stability have 
not been seen; simply that more factors need be 
entered into the figure of merit, and equally 
important, more operating experience is needed. 

The non-linear optimization program 'P' uses a thin- 

lens sextupole representation, and precomputes all 
linear transfer matrices (bends, quads, and drifts) 
into composite linear matrices between sextupoles, 
analogous to the method used in ZEN between quad- 
rupoles. Then, for two (typically +/- .4%) off- 
momenta, equivalent matrices (effectively two new 
linear lattices) are found using linearized sextupoles 
and trackinq sinelike and cosinelike trajectories 
through them. Additionally, a test trajectory with 
horizontal betatron amplitude = 10 SIGMA of the nominal 
beam size is tracked to find itsNU-value. Given the 
NU- and beta-values for these two Off-momentum systems 
a figure of merit is constructed containing the summed 
squares of the excesses in beta, and errors in NU and 
interaction beta from the on-momentum values, or other 
assigned target values. 

Limited experience using this program indicates 
that it does smooth the variations of beta with 
momentum, while controlling the variation of NU with 
both momentum and oscillation amplitude. In some cases 
this has increased the effective usable aperture for 
the beam; however there have also been cases where 
overall stability has not improved, or grown worse. 
It is hoped that more global criteria for beam 
stability can be included in this optimization scheme 
in the future. 

Observations and Strategies 

As in MAGIC the overall optimization proceeds in 
a (user-specified) number of steps from an initial set 
of requirements, and an initial lattice, which need 
not meet them, to a final set of requirements, 
producing a sequence of lattices, hopefully meeting 
the successive demands. Both from conversation with 
one of the MINOP authors and from operating experience, 
it has been found useful to preserve the Hessian 
matrix (containing approximations to the partial 
derivatives of the function F, with respect to all the 
variables) between these sub-optimizations. This 
allows successive optimization steps to utilize 
information about the figure of merit surface found in 
prior stages. 

TWO other strategies have proven useful in 
avoiding stalling of the optimization near a sub- 
sidiary minimum or near minimum in F. Before each 
sub-optimization step, all (except the interaction 
region quads) quadrupoles or sextupoles are randomly 
perturbed by a small amount, e.g. .0004 ~-1 of a 
typical .25 quad strength (K). Also the user may 
specify that starting values for each step be projected 
part way forward along the path of previous sub- 
solutions by linear extrapolation. Both methods are 
routinely used. 

In general it has been found possible, by means 
of variable weights, to incorporate into F all the 
important design parameters among which engineering 
compromises must be made. In this way, more of the 
power of the optimization routine has been brought to 
bear on the design of acce?erator lattices. 
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