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Introduction 

At the 1975 Particle Accelerator Conference it was re- 
ported that a class of resonances were observed in SPEAR II 
that had not appeared before in SPEAR I. ’ These reso- 
nances occur when the betatron oscillation wave numbers vx 
or vy and the synchrotron wave number vs satisfy the 

with m an integer denoting the m?@&t- 
of sideband resonances of the 

main betatron oscillation frequencies has been previously ob- 
served and analyzed, the resonances ob erved in SPEAR do 
not appear to be of the same variety. 23 

The main difference between SPEAR II and SPEAR I is 
the value of ys, which in SPEAR II is - 0.04, an order of 
magnitude larger than in SPEAR I. An ad hoc meeting was 
held at the 19’75 Particle Accelerator Conference, where de- 
tails of the SPEAR II results were presented and various 
possible mechanisms for producing these resonances were 
discussed. Later, experiments were performed at SPEAR to 
identify the mechanism we believe to be the most likely ex- 
planation. We have been aided immensely ln arriving at our 
present interpretation by suggestions of Voss at the 1975 ad 
hoc meeting and by the theoretical work of Piwinski and 
Wurlich of DESY. The purpose of this paper is to present 
some of our current experimental knowledge and theoretical 
views on the source of these resonances. 

General Experimental Observations 

The size of the beam was observed to increase whenever 
(vx,y -1;“~s) = 5 with m integral. A survey of this growth in 
beam size showed that the satellite of the vertical integer 
resonance gave measurable growth up to m as large ai 10, 
and that for m ( 5 the vertical beam growth could fill the 
available aperture and cause beam loss; the satellites of the 
horizontal integral resonances are weaker than the vertical 
resonances; and the growth in betatron amplitude is inco- 
he rent. 

Satellites of other resonances were also studied. We 
found that the satellites of the coupling resonance, (ox - py) = 
0, and the half-integral resonance, vx 

%l;:;.5* Faorre tz-2 two weak as compared to the integral reson 
cases, only the first two satellites have been observed. In 
all cases, the resonances are spaced by vs and we see no in- 
dication of resonance lines spaced at $s. The strength of 
the vertical integral resonances decreases with energy, in- 
creases with beam current, is strongly dependent upon verti- 
cal orbit distortions present in the ring, and is insensitive to 
changes in the chromaticity of the ring. 

In order to understand the mechanism that produces the 
resonance, a careful study of the ring parameters which af- 
fect the resonance blowup was undertaken. For this purpose 
we studied predominantly, although not exclusively, the par- 
ticular resonance ( vy - 5Vs) = 5. 

FM Sidebands 

It has been known for some time that because the trans- 
verse betatron oscillation frequencies are frequency modu- 
lated by the energy oscillations it is possible to excite res- 
onances at frequencies which are sidebands of the main beta- 
tron-oscillation frequencies. 2* 3 These sideband resonances 
ar uniformly spaced at the synchrotron frequency; i.e., the 
,tYl sideband occurs at a wave number equal to (vx,y, * mvs), 
with m an integer. Since the transverse force on a particle 
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produced by the magnet elements in the lattice occurs at in- 
tegral multiples of the revolution frequency, we would expect 
that whenever the sideband resonance frequency equals an in- 
tegral multiple of the revolution frequency, i.e., for (~x,~ f 
mvs) = n, we could have growth in the transverse motion. 

The strength of the mth sideband reson ce is propor- 
tional to J (AC function mx *f, y!“s) where Jm.is.the m t’order Bessel 

is the peak variation of the betatron tune 
and is equal to &laverage value of the chromaticity function 
times ;hhe peak relative momentum variation; i.e., Apx,y = 
E, ..(Au/D~. For these resonances, the strengths should de- - . . 
$&&I very strongly upon k and vanish when 5 approaches zero. 
However, all experiments have shown clearly that the 
strength of the resonances is independent of 4 over the range 
0 < E < 10. In addition, the resonance strength should de- 
crease with increasing values of vs. Sincevs is higher in 
SPEAR II than in SPEAR I. these sideband resonances should 
be weaker in SPEAR II. It should also be easily possible to 
drive them by RF knockout techniques, which again was not 
the case. From all of these observations we have concluded 
that the resonances are not the usual FM sidebands. 

Half-Integral Resonances 

We have considered half-integral resonances driven by a 
periodic variation in the chromaticity function as a possible 
explanation of the sideband resonances. Since the 10th har- 
monic of the chromaticity function is rather insensitive to 
changes in the average chromaticity, and the strength of the 
half-integral resonances would be relatively independent of 
the value of vs, the experiments described above did not ex- 
clude this as a possible explanation. The 10th harmonic of 
the chromaticity function should drive the resonances at 
wave numbers (2~~,.~ - 
denotes the harmonic 

mvs) = 10, with m an integer which 
of the energy oscillation responsible 

for the resonance. The absence of resonances at odd values 
of m would tend to rule out the half-integral resonances as 
the mechanism, provided that the odd harmonics of the syn- 
chrotron oscillations are comparable to the even harmonics. 
An experiment was conducted in which the 10th harmonic of 
the chromaticity function was varied and indeed reduced to 
zero, Independent of the average chromatic@, by powering 
several families of sextupoles. It was found that the strength 
of the resonances was not reduced as the 10th harmonic of 
the chromaticity function vanished, which led us to conclude 
that this was not an important contribution to the resonances 
found in SPEAR II. 

Proposed Model 

During the earlier studies of the integral resonances, it 
was difficult to obtain reproducible results on the resonance 
strengths. In particular, we originally found the resonance 
strength to be sensitive to the value of 

“f 
1 but this was 

subsequently traced tc the fact that the c oyid orbit for fixed 
settings of the correcting elements was dependent upon the 
value of pmax. When the orbit errors were minimized sep- 
arately for each value of p 
the resonance strength wi#p 

much of the dependence of 
disappeared. This led to a 

systematic study of the effect o orbit errors on the reso- “F 
nance and to the current picture we have of the cause of these 
resonances. 

There are many elements in SPEAR that can change the 
energy of a particle. These include various vacuum chamber 
discontinuities as well as the main RF cavities which supply 
the energy radiated into synchrotron light. Consider the 
case where there is no dispersion at one of these cavities; 
then the equilibrium orbits, ye, for different energy parti- 
cles coincide at the cavity, as shown in Fig. 1. Consider a 
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Fig. 1 

particle with zero betatron amplitude but an energy deviation 
from the synchronous energy, ~1. The particle will be trav- 
eling on the equilibrium orbit yp(~,) before it enters the cav- 
ity and on the equilibrium orbit‘jre$2) when it leaves the cav- 
ity with energy ~2. 
and remain zero. 

The betatron amplitude will be unchanged 

On the other hand, if there is a dispersion at the cavity 
the equilibrium orbits for different energy particles do not 
coincide in the cavity, as shown in Fig. 2. When a particle 
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Fig. 2 

with an initially zero betatron amplitude and energy deviation 
el leaves the cavity with a different energy deviation ~2 it 
discovers that it is not on the proper equilibrium orbit and 
will start to execute betatron motion about the proper equi- 
librium orbit ~~(62). Because the energy deviation of a par- 
ticle oscillates about the synchronous energy at the synchro- 
tron frequency, the betatron motion of a particle will be 
driven at the synchrotron frequency plus an integral value of 
the frequency of passage through the cavity, and a resonance 
will occur whenever this driving frequency is equal to the 
betatron frequency. Another important ingredient necessary 
to explain all of the observed resonances in SPEAR is the 
assumption that synchrotron motion is nonlinear so that en- 
ergy change at the cavity oscillates at multiples of the syn- 
chrotron frequency. This leads to the resonance condition 
between the hetatron wave numbers vx or vy and the synchro- 
tron wave number Vs 

(V %Y 
-mvs) =p (1) 

with m and p integral. 

One of the interesting observations of these resonances 
is that the vertical resonances are much stronger than the 
horizontal resonances. We note that the horizontal disper- 
sion 7jx is generally much larger than the vertical dispersion 
vyr arid in fact 5 is zero in a perfectly aligned ring. -How- 
ever, for the perfect ring the horizontal dispersion in SPEAR 
has only even harmonics-and the cavities which produce the 
nonlinear energy changes are rather uniformly distributed 
around the ring. Thus, only even values of p in Eq. (1) can 
produce a resonance and, for a perfect ring with vx z 5, we 
would not expect to observe strong horizontal resonances. 
The satellites of the vx x 4 resonances have been observed to 
be noticeably stronger than those of vx c 5. 

Effects of Imperfections 

In this section we will describe in detail how the reso- 
nances are excited by a variation of the closed orbit with mo- 
mentum, i.e., the dispersion 7. We will consider here the 
vertical resonance, noting that similar results apply for the 
horizontal resonances. The radial magnetic field seen by a 
particle can be written as 

Bx(x,y,s) = a(s) i g(s)y + r(s)x r Zh(s)xy (2) 

where x, y, and s are the horizontal, vertical, and longitudi- 
nal coordinates, and we define a(s) as the strength of the di- 
pole field errors and correcting fields, g(s) the quadrupole 
strength, r(s) the skew quadrupole strength, and A(s) the 
sextupole strength. 

For the synchronous particle, it is possible to define a 
closed orbit which we denote as [x0(s), y&s)]. The function 
yO(s) must be periodic and satisfy the following equation. 

or 
1 

i j 

(3) 

Y; - ,Bp ok(s) + ~w)x~lY~ = Fp 
( i 

’ [a(s) + r(s)xO]. * 

where (BP)~ is the magnetic rigidity of a synchronous parti- 
cle. The vertical motion of an off-energy particle is differ- 
ent from that for the synchronous particle because both the 
magnetic rigidity and the horizontal magnetic field experi- 
enced by the particle depend upon the particle energy. The 
difference between the vertical position of a particle y and 
the on-energy equilibrium orbit yg through first order in the 
energy deviation E satisfies: 

(Y-Y,)” - $ oLg(s)-(g(s)-2~(s)~x~~l (Y-Y,) 
( 1 

=- - 
i 1 Blp ol a(s)+g(W, - r(s)~x-Ws18.gol E I (4) 

where we have assumed that the value of the horizontal dis- 
persion qx is much larger than the horizontal orbit distortion 
x0, and we are neglecting the transverse coupling of the beta- 
tron motion. The equilibrium orbit ye(c) for a particle with 
energy deviation E is related to the vertical dispersion func- 
tion qy to first order in E by 

Y,(C) = Yo + ‘lye - (5) 

The dispersion function qy is the periodic solution to the fol- 
lowing equation: 

vi- & g(s)vy = - & L a(s)~g(s)Yo-r(s)gx-2~(s)rl~o]. (6) t i 0 i j 0 

The chromaticity term on the left-hand side of Eq. (4) has 
been ignored, since we are considering the motion through 
first order in E. We now can study the betatron motion for 
off-energy particles by denoting y (E) 
Eqs. (4)-(6) to yield P 

= y-y,(~) and combining 

Y;; - j$ ( 1 0 
g(s)yp = - (TJyE')' -7)';E' , 

where again we ignore the chromaticity terms. As was illus- 
trated in Figs. 1 and 2, a change in the energy of AC pro- 
duces a change in the betatron motion as given by 

Ay B = -77YAE ’ 
Ay; = -r]$At- , (8) 

where v and r$, are evaluated at the point where the energy 
change ccurred. B For the resonance (vy f mv,) = p to be ex- 
cited by 77 or q’ there must be frequency mvs in the particle 
energy gain. For a short bunch the RF field is nearly linear 
and the fields that produce nonlinear energy gains must come 
from parasitic modes in cavities, chamber discontinuities, 
etc. Since these elements are rather uniformly distributed 
around the ring we assume that the portion of the energy 
change that oscillates at mvs is smoothed out around the ring, 
and the resonance (vy - mv = p is driven by this portion of 
the energy oscillation, toge her with the pth harmonic of 7 t’ 
and 77’. In SPEAR ox and V _ are normally near 5 so the dom- 
inant harmonic of r) and 77 12 ccurs for p=5 and is entirely due 
to imperfections and misalignments. The effect of these im- 
perfe&ions is probably worse vertically than horizon ally. 
The p harmonic of TJ and 17’ is proportional to the p tfl 
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harmonic of the function F(4) given by 

F(e) = P3’2(~,) Ia(@)+g(NYo(@!- r(~)?X(~)-2A(~)71x(9)~,(~)l. (9) 

A convenient measure of the resonance effect upon the 
beam size is the blowup factor B defined by the ratio of the 
beam height on-resonance to the height off-resonance. Since 
the portion of the beam height due to the resonance adds in 
quadrature to the normal beam height, it follows that, if the 
longitudinal particle oscillations are random in phase, the 
blowup factor is given by 

B2 = l+KIFpI’<s;> , ( 10) 

where K is a constant that depends upon the size of the beam 
off-resonance, the damping mechan’ Bl m that restricts the 
resonance growth, etc. F is the p harmonic of F(G) de- 
fined by Eq. (9), and <c,$$‘is the squared value of the mvs 
energy oscillation averaged over the particle distribution. 
While the exact value of F($J) due to imperfection is not 
known, it is possible to determine the changes in the closed 
orbit resulting from change in dipole settings, and hence 
changes in Fp can be calculated quite accurately. 

Experimental Results 

The calculations presented in the previous section allow 
predictions to be made on how the beam blowup factor should 
vary with machine parameters in SPEAR. An experiment on 
the dependence of B2 on y was performed. The orbit cor- 
rection program was use 8 to determine the dipole fields in 
the ring necessary to change the value of y. at the two inter- 
action regions in such a way as to produce only odd harmon- 
ics in F(G). For small changes the value of F5(@) was pro- 
portional to the angle of the equilibrium orbit (y’)* at the in- 
teraction region. The results shown in Fig. 3 1 emonstrate 
that B2 does vary$arabolically with (y’)*. When we compare 
the variation of B found experimental y with that expected P 
from Eq. (l), we find that the observed beam blowup can be 
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Fig. 3. B2 as a function of (yC;)*. 

explained by a 5th Fourier component of the syuchrotron os- 
cillation, which is about a factor of 500 smaller than the first 
Fourier component. We believe that this is a reasonable 
value to be expected from parasitic modes excited by the 
beam. 
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