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Introduction 

The importance of parasitic mode losses for the design’ 
and operation of electron-positron storage rings is now well 
recognized. These losses at present set the limit on allow- 
able beam current in the SPEAR II ring under some opera- 
ting conditions. 1 Parasitic mode losses and their potential 
deleterious effects are a prime consideration in the design 
of the PEP vacuum chamber. Too high a loss impedance 
can lead not only to overheating of individual components but 
to a reduced threshold for bunch instabilities. It is impor- 
tant therefore to have available adequate measurement and 
computational methods, both as an aid in the design of spe- 
cific vacuum chamber components and to provide a better 
understanding of the nature of the loss impedance. 

Measurement Technique 

The basic measurement method has been described by 
Sands and Rees. 2 Figure 1 shows a diagram of the instru- 
mentation. ln this method a wire is stretched along the axis 
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Fig. 1. Diagram of the instrumentation for 
measuring parasitic mode loss. 

of the component under test. Transitions taper from the 
beam port apertures at each end of the component down to 
50 ohm coax lines, A nearly Gaussian pulse is generated by 
passing the step output (20 ps risetime) from the tunnel 
diode through an appropriate combination of a shorted tee 
and low-pass filter. The pulse passes through the test com- 
ponent to the sampling oscilloscope and the output is 
recorded on an x-y recorder. As the incident pulse IO(t) 
passes through the test component, resonant electromag- 
netic modes which have a longitudinal electric field on the 
beam axis are excited. These excited modes in turn induce 
a secondary pulse, Is(t), in the axial wire. A perturbed 
pulse 11(t) = IO(t)-Is(t) then emerges from the system. The 
incident (unperturbed) pulse IO(t) is obtained by replacing the 
test component with a reference pipe having the same cross 
section as the beam apertures of the component. Following 
the theory in Ref. 2, a loss parameter k (having dimensions 
volts/Coulomb) is obtained from 

k = (2Zo/Q2)/Io(t)Js(t) dt 

where Z is the characteristic impedance of the reference 
pipe and*Q is the charge in the pulse, Q=JIo(t) dt. 

Figure 2 shows a typical recording for IO(t) and II(t) for 
the cavity shown. Note the crossover of IO and 11, indicating 
that the latter part of a bunch gains energy from the fields 
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Fig. 2. Recorded output pulses I (t) for the reference pipe 
and 11(t) for a cylindrica P cavity having the dimen- 
sions shown. 

induced by the preceding particles. In making this record- 
ing, the waveforms for IO and II were carefully super- 
-imposed in the knee region (t = 400-600 ps) . In more recent 
measurements the curves are not superimposed during the 
measurement but are recorded with a horizontal separation, 
then digitized and shifted by a computer program to obtain 
proper coincidence. It can be shown in any case that to first 
order k is not sensitive to small relative shifts between b 
and 11, 

There are some subtle points in the theory of the method, 
and some difficulties in the measurement technique as 
described here. For example, the axial wire would seem to 
short out the very modes that the pulse is trying to excite. 
The wire used in our measurements (2.4 mm diameter) does 
indeed lower the Q’s of the modes drastically, and in addi- 
tion the frequencies of the lowest few modes are perturbed 
somewhat. The success of the technique is, however, based 
on the reasonable supposition that the wire does not substan- 
tially change the R/Q of a mode, defined as R/Q = V2/,W 
where eV is the energy loss for a particle passing along the 
axis and W is the stored energy. The total loss depends 
only on the R/Q’s of the modes through3 

k = g $.,/4)(R/Q), exp (-w$J’“) (2) 

Here the exponential factor takes into account the effect of 
the bunch length CT, assuming a Gaussian bunch. 

As an example of one of the difficulties in the measure- 
ment technique, the method relies on the stability of the 
sampling oscilloscope during the time it takes to exchange 
the test component and reference pipe. In particular, the 
stability of the time base (51 ps) limits the resolution tc 
(for example) ak* .005 at o= 75 ps. There are ways 
around this problem (e.g., by splitting the incident pulse 
and recording the output pulses from the test component and 
reference pipe simultaneously), but this and alternative 
measurement schemes have problems of their own. Be- 
cause of these uncertainties in theory and technique, we 
have felt it to be important to compare the measured results 
with both computations and with experimental results from 
SPEAR when possible. Agreement would build confidence in 
both the measurement and the computations. 
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Comparison of Computation and Measurements 

Our basic computational tool at present is E. Keil’s 
program KN7C. 4 This program calculates the resonant fre- 
quencies and R/Q’s for the longitudinal modes in a periodic 
chain of cylindrical cavities coupled by cylindrical beam 
pipes. 8uch a structure cannot accurately model a single 
cell for those modes which can propagate in the beam pipe. 
However, in many practical cases, because of the exponen- 
tial factor in Eq. (2), the loss for bunch lengths of interest 
is almost all to the nonpropagating cavity modes. 

Table I below shows a comparison between the computed 
and measured values for total loss for three cylindrical 
cavities. In each case, the radius of the beam port is 7.5 
cm and the height (gap length) of the cavity is 22.5 cm. 

Table I 

Outer Cavity k Computed 
Radius from KN7C 

(cm) cv/PC) 

Measured k 
cv/PC) 

30 . 156 . 162 - . 185 

18.75 . 144 .153 

12.5 .070 .069 

These results are for a bunch length oa = co= 3.3 cm. For a 
bunch length of 7.25 cm, the computed and measured values 
were .054 V/PC and .048 V/PC respectively for the 18.75 
cm radius cavity. The recorded curves in Fig. 2 show IO(t) 
and II(t) for this latter case. 

A more detailed comparison between the theory and the 
bench measurements can be made by considering the func- 
tion I,(t) in Fig. 2. To compute I,, we require the wake 
potential W(T) for the cavity. This is the potential seen by a 
particle crossing the cavity at time r behind a charge im- 
pulse of unit amplitude. The wake potential can be obtained3 
from the cavity modes through 

W(T) = 2 c (t9/4)cR/Q), ~0s tin-r (3) 
n 

In practice, it requires too much computer time to compute 
more than about 100 modes. Equation (3) has therefore been 
extended to include the effect of higher frequencies (giving a 
more accurate wake at small T) by adding an integral based 
on an optical resonator model of the periodic structure. 
Details of the calculation are given in Ref. 3. In Fig. 3 the 
relative contributions to the wake are shown for a cylindrical 
cavity having the dimensions given in Fig. 2. Note that the 
form of the wake at small r is dominated by the analytic 
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Fig. 3. Relative contributions to the wake functions from 
the sum over modes and the analytic extension for 
the cavity of Fig, 2. 

extension, but that the characteristic length and integrated 
strength of the wake is mainly determined by the sum over 
modes (in this case 50 modes). By comparing Eqs. (2) and 
(3), note also that the intercept of the wake at T=O is related 
to the loss parameter k by w(0)=2k(c=O). 

As was mentioned previously, if results from KNPC are 
used in Eq. (3) the wake function will include the effect of the 
interaction of the bunch with traveling wave modes in an 
infinite periodic structure for those frequencies high enough 
to propagate in the beam port cylinders. There is a second, 
more subtle, difficulty. Equation (3) is correct for a cur- 
rent impulse crossing the cavity, but any contribution to the 
wake due to the scalar potential arising from free charges in 
the cavity has been ignored. The question of the relative 
contribution to the wake from the scalar potential has not yet 
been satisfactorily resolved theoretically, but good agree- 
ment with the results from bench measurements, where it 
would seem that the scalar potential should contribute to 
Is(t), would place a limit on this contribution. 

The total potential at any time t within the bunch due to 
all charges passing through the cavity or system previous to 
time t is given by 

k(t) =$/, W(T) I(b-7) dT 
0 

(4) 

For a Gaussian bunch, Eq. (4) becomes 

k(t) = +- 
co 

w(T) e-(t-T)2/2u2 dT 

J& 0 
(5) 

The total loss per unit charge is obtained from k(t) for the 
general and Gaussian cases as 

1 cc 
I 

m 

ktot=i;5 -cc I 
k(t) IO(t) dt = 1 k(t) e 

-t2/2a2 dt (6) 
Jz0-m 

It can be shown3 that the function k(t) is related to the ex- 
perimentally measurable function Is(t) in Fig. 2 by 
k(t) =2ZOIs(t)/Q. For a Gaussian bunch this becomes 

1 (t) 
r” -,.&k(t) -- 
P 0 

(7) 

where I,=Q/(ds ff) is the peak current. In Figs. 4, 5 and 
6, measured values of Is(t)/Ip are compared with computed 
values obtained starting with the R/Q’s and ~~1s from KN’IC, 
then applying Eqs. (3), (5) and (7). The computed curves 
have not been normalized in any way; it is seen that the 
agreement is quite good, in spite of the uncertainties in both 
theory and measurement. 

Note that the total loss parameter k can be obtained in 
two ways: directly from the sum of modes using Eq. (2), 
and from the integral in Eq. (6). A comparison of the two 
values provides a check on the computation. This 

a 0.05 
-=: 
z 

- 1 

-2 0 

-0.05 

-0.10 i 

Fig. 4. Computed and measured functions Is(t)/Ip for the 
cavity shown in Fig. 2 for a bunch length u= 110~s. 
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Fig. 5. Computed and measured function6 I,(t)/I for the 
cavity shown in Fig. 2 for a bunch lengtl?a= 240 p6. 
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Fig. 6. Computed and measured function6 I (t) 
r’ ~of~~~~6. cavity shown in Fig. 2 for a bunch en 

comparison is given in Table II below, together with meas- 
ured values of k, for the same cavity and bunch lengths a6 
in Figs. 4-6, 

Comparison with Measured Lo66 in SPEAR 

There have been several instances where a comparison 
has been possible between the parasitic mode heating pro- 
duced in a component by the SPEAR beam, and the heating 
calculated from the result of a bench measurement on the 
same component. The most precise results have been 
obtained from heating and cooling curves for a flange pair 
in SPEAR.5 In this flange, a radial gap several centimeter6 
deep by several millimeters in length presents a dfsconti- 
nuity which is a source of power dissipation. For a 30 mA 
beam JKith a bunch length of 3.5 cm, the power dissipation 
obtained from the temperature-time plots was 12.5 W. The 
bench measurement gave a value for the loss parameter of 
k= .014 V/pC at this bunch length. The loss resistance is 
related to k by R=kTO, where To is the revolution time. 
For SPEAR TO=0.78 ~6, giving R= 11 k&X For a 30 mA 
beam P = 12R = 10 W, in good agreement with the power 
dissipation obtained directly from the temperature rise data. 

Conclusion 

Good agreement ha6 been obtained between computed 
values and results from a bench measurement technique for 
the total 1066 to parasitic mode6 in several cylindrical cav- 
ities with beam ports. The measurement of loss as a func- 
tion of time within the current pulse also gives result6 which 
are in good agreement with computed functions, especially 
considering the fact that there are questionable points con- 
cerning both the theory and the measurement technique. 
Within measurement errors, there is also agreement in a 
few case6 where a comparison is possible between a bench 
measurement result and the heating produced directly in a 
component by the SPEAR beam. 
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Table II 

B 

Ps 

110 

240 

350 

k tot 
V/PC 

. 146 

.0551 

.ol83 

k (Z modes) k (measured) 

V/PC V/PC 

.144 .153 

.0543 .048 

.0177 .0174 
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