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POTENTIAL AND FIELD PRODUCED BY A UNIFORM OR NON-UNIFORM ELLIPTICAL BEAM

INSIDE A CONFOCAL ELLIPTIC VACUUM CHAMBER
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1. INTRODUCTION

The potential produced by an isclated beam
of 2lliptic cross-section seems to have been conside-
red first by L.C. TENG 1 Image effects of line charges
in elliptic vacuum chambers were introduced intc
accelerator theory by L.J. LASLETT

mate solutions for elliptic beams of finite cross-

2. Various approxi-

section coasting inside an elliptic vacuum chamber
were subseguently proposed by P, LAPOSTOLLE 3 and
C. BOVET 4.

In this paper a rigourous expression will
be derived for the potential produced by an slliptic
beam inside an elliptic vacuum chamber , provided the
beam envelope and the vacuum chamber can be assimilated

to confocal ellipses.

2. THE UNIFORM BEAM

Let o, be the charge density, 2g and 2p the
axes of the ellipse representing the beam envelope, 20
and 2P the axes of the ellipse representing the vacuum
chamber, 2c the distance between foci (Fig 1) and ¢ the
potertial. The nature of the problem suggests using

elliptic coordinates. We put

D€ n<e=
LYKo

x = c chn cosY¥ , 1)

y = c shn sin¥

If we define the vacuum chamber by n, and the beam

1
envelope by n, we have

G=c chn1 , P = c shn,
= ¢ ch = ¢ sh ‘ (2)
g ns B p n,
and the confocality condition can be written
G2 - P2 = gz - p2 = :2 (3)
Symmetry of the potential imposes the constraints
Pin,-¥) = o(n,¥) ., d{n,m-¥) = ¢(n,¥) (4)
while symmetry of the electric field requires
3% B 3¢ a a9 ~ -
(Gidneo =0 v (E)lyo =0 - (3g)y -z c )

+ = 0 (8)

and the solutions are cf the farm

_ ~ 22 -
$ = An + B . ® = Cin ¥ o« 0¥ (7

® = (a chnn + = shnni(c cosn¥ + ¢ sinn¥)

Taking into account the pericdicity relation
¢(n,¥ + 21) = ¢(n,¥) and the symmetry requirements ([4)

and (5), the general solution of Laplace's equation

can be written
e
,/> [anch2nn + bnsh2nn30052nW + An + B (8)

e

n=1
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with n integer.

To solve Poisson's equaticr

2 2 2
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in the case of constant density we put
OOCZ
d=0 - e (chZn + zos2¥) and are thus reverted to a
o

Laplace eguation in Q. The sclution of Poisson's equation

can therefore be written
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Assuming now that the vacuum chamber is at =zera poten-
tial and writing the continuity conditions for the
potential and the field at the transiticn between the
Laplace region and the Poisson region, all coefficients
in Egs (8] and (10) can be determined. Putting 2n= g,
2¥= ¢, the result can be written 5
2 shle, - &)

p c
- O - -

L ae (11
o

CoOs¢ sh£2

p_C 1
=]
P =0 + — - - -che - 3
p=dt BED{[ch(E 52) 1]cos¢+ch52 chg+ (g £2Jsh52; {(12)
J
In elliptic coordinates the Laplace potential is simpler
than the Poisson potential ; in cartesian ccordinates
2-02)2 R

the above expressions can indeed be written in

however the reverse is true. Putting 24=(x2—y
2 2
4xy

the form
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The potential inside the beam being parabolic in x and
y, we are led to linear expressiors for the field ,
components, viz.
. PP (G - PJZ
E = - —_— X (24)
oOgD GP B Ve X c2 GZ R 2
B, ~© S (2 > 5 - =) x (15) €s
€ C G-+ P g o .BP ! 2
o _ s} (G - P)
E =+ ———— Y (25)
Ve y 2 2 2
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OOED g oGP =]
E = (2 - 2—5—=)y (16)
Y € C P G-+ P The field due to the presence of the vacuum chamber
The field components outside the beam are more compli- is everywhere linear, it reduces the field due to the

cated. One finds

b_ED 22 2 2
e | =2 (2 5 x| - frYze (17)
X 2 2 2 N 2
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The potential has a maximum at the centre of the beam.

From Eq (13) we find

0 gp
o = ; ( — GP 5+ An & . Py (18)
max €, o . p g+ p

Letting G » « P - = in Egs {15-18) we find for the
camponents of the electric field inside an isolated

beam

P PX
Eix T o) (200
i 8 P
P BY
E, LS A (21}
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and for the same components outside the isolated beam

o _gF étm2 2_h2
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The effect of the vacuum chamber wall is obtained by
taking the difference bpetween the field vectors in the
presence and in the absence of the vacuum chamber ; this
is usually referred to as an "image effect”. We find for

the componerts of this field
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isolated beam in the direction parallel to the major
axis and increases the isolated beam field in the

direction parallel to the minor axis.

3. THE NON-UNIFORM BEAM

We now allow the density.distribution to be

n-dependent and make two assumptions

a) With the exception of a scaling factor {(which will
depend on the density distribution), we assume that in
the Laplace region, the potential is the same as in the
case of a uniform beam.

bl We assume that, as in the case of a uniform beam,
only the second harmonic of y will survive in the

Fourier expansion of the potential distribution.

If we can solve Léplace's and Poisson's eqgua-
tions on the basis of these assumptions and if we can
make these soclutions obey all boundary cénditions. we
shall have solved the potential problem by virtue of
the unigueness theorem.

According to the first assumption we write for
the Laplace potential

2 ShZ(n“ -0 1

C
_iC_hZ—r_;l—._ cos2y (26)

o =z Kingoon-
o
where only K is assumed to depend on p(n)., According to

the second assumption we put

4 = G(n) + Hin)cos2y (27)
Replacing these values in Eqg (9) we can separate
Poisson's equation into

o(n]c2
H" -~ 4H = ——— (28)
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and p(nJc2

G" = - S ch2n (28}

o
Solving these eguations and taking into account the
boundary conditions one finds for the potential 6
2 [ sh(g,‘—gJ ] &2
¢ = EE_O C[EZJ 51‘52' ———CFE-T— cos¢ |+ C(uldu
£ (30)

+ [STEJche - TlETshe] cos¢}

where £ = 2n, ¢ = 2¥ and we have put for abbreviation

g £

C(g) = J pb%) chsds S(g) = J o(;')shsds (31)
Q g

Clg) = C[Ez) - C(g) STg) = S(EZ] - S(g) (32)

Eq (30) applies to the Poisson as well as to the Laplace

region. In the latter case C(g) = S(£) = 0 and therefore
2 [ sh(g1 - &)
$L = EE; C[gz] 51 - £ - ch£1 cosg (33)
The field components are given by
E, - El‘ [Cle,)the, ~S(E,)+S(E)-ClEIth = ]x (34)
=1 - - £
Ey 5 [5(523 Clg,)the -S(8)+C(E)coth F]y (35)

inside as well esoutside the beam. The first two terms
in these expressions represent the linear part of the

field, whereas the last two terms are non-linear contri-

butions, If p = Py = const we have S(£)-C(£)th % =
C{&)coth % -S{&) = 0 and the field is strictly linear

inside the beam.

)

3

For the image fields ane finds
. R Rk
VG X 250 GZ . P2
. A (e ok
ve y %, Z.p2 7
The "reflection” of an elliptic beam in an elliptic

vacuum chamber produces two perpendicular virtual beams

of opposite charge.
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