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1. INTRODUCTION 

The potential produced by an isolated beam 

of elliptic cross-section seems to have been conside- 

red first by L.C. TENG '. Image effects of linecharges 

in elliptic vacuum chambers were introduced intc 

accelerator theory by L.J. LASLETT '. Various aoproxi- 

mate solutions for elliptic beams of finite cross- 

section coasting inside an elliptic vacuum chamber 

were subsequently proposed by P. LAPOSTOLLE 3 and 

C. BOVET 4. 

In this caper a rigourous expression will 

be derived f;r the potential produced by an elliptic 

beam inside an elliptic vacuum chamber , provided the 

beam envelops and the vacuum chamber can be assimilated 

to confocal ellioses. 

2. THE UNIFORM BEAM 

Let pG be the charge density, 2g and Zp the 

axes of the ellipse representing the beam envelope, 2G 

and 2P the axes of the ellipse representing thevacuum 

chamber, 2c the distance between foci (Fig II and @the 

potertial. The nature of the problem suggests using 

elliptic coordinates. We put 

x = c chn COSY O<n<- 
111 

y = c shn sinY -n<Ydn 

If we define the vacuum chamber by “, and the beam 

envelope by n2 we have 

G = c chn,, 

g = c chn2 

P = c shil, 

p = c shll 
(21 

> 
2 

and the confocality condition can be written 

G2 _ p2 I g2 _ p2 = c2 (31 

Symmetry of the potential imposes the constraints 

'o:r.-Yl = Q[n,Yl , O[rl.n-Yl = @(n,Yl (41 

while symmetry of the electric field requires 

($)qzo = 0 I (g)v=o = 0 m !-g),,r = 0 (51 
, 

2 

In elliptic coordinates Laplace's equation is simply 

a20 a24 -+- = 0 
217 

2 ay2 

and the so .&ions are ci the form 

o = AT, + B , 0 = ccn* - 721 + 3 
(71 

0 = (a chnn + c shnn; [c cosny + 1 sinnY1 

Taking into account the pericdicity relation 

+[rt,Y + 2nl = C~fc,Yl and the symmetry requirements C41 

and (51, the general solution of Laplace's equation 

can be written 

+ 

@L = ,) Ianch2nn + bnsh2nn)cos2nY + Ah + B (61 
L 
n=l 

with n integer, 

To solve Poisson's equaticr 

a - !$ [chZn - coszy] 

0 

(91 

in the case of constant density we put 

9= s-l - 
PoC2 
8~ Ich2n + cos2Yl and are thus reverted to a 

0 

Laplace equation in Q. The solution of Poisson's equation 

can therefore be written 

~ ?- P,C2 
' (a ch2nn+Bnsh2nnlcos2n7+En+F- F Ich2n+cosZYl(101 

0 

Assuming now that the vacuum chamber is at zero poten- 

tial and writing the continuity conditions for the 

potential and the field at the transition betweeh the 

Laplace region and the Poisson region, all coefficients 

in Eqs (61 and [lOI can be determined. Putting 2r1= 5, 

2T= a, the result can be written 
5 

PoC2 I 

OL =Be 5, - 5 - 
sh@, - Cl 

CDS@ she (III 
0 i c"6, I 2 

PoCL 
@P=*L+BEg 

1 
[ch(5-52)-1]cosO+ch52-ch5+(5-521shS2:, 1121 

i 

In elliptic coorcinates the Laplace potential is simpler 

than the Poisson potential ; in Cartesian coordinates 
2 2 22 however the reverse is true. Putting z'=(x -y -c ) + 

4x2y2 the above expressions can indeed be written in 

the form 

[61 
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1 
/ 

2 2 2 2 
+- 

c2fi 
(Ix/,x -y +z -c 

The potential inside the beam being parabolic in x and 

y, we are led to linear expressions for the field 

components, viz. 

Ex = 

E = 
Y 

GP)Y 
G2 + P2 

(151 

Cl61 

ii-e field components outside the beam are more compli- 

cated. One finds 

(171 

The potential has a maximum at the centre of the beam. 

From Eq (131 we fine 

a 
P ,gP 

z- 
max 2E 

Ll 
(19) 

Letting G + m, P -t = in Eqs Cl!?-181 we find for the 

components of the electric field inside an isolateo 

beam 

Eix = 

POW 

Eo[g + PI 
[I201 

E = 
PogY 

iy cocg + 31 
[Zll 

and for the same components outside the isolated beem 

lEixl = --gxl-~/ POW /LxTy~ 2 3 1 C221 

EOC -. -- -..- 
p,w 2 2 2 2 

lEiy’ = 2 cJ ’ -’ ;’ +’ - lyI ) (231 

0 

The effect of the vacuum chamber wall is obtained by 

taking the difference oetween the field vectors in the 

presence and in the absence of the vacuum chamber : this 

is usually referred to as an “image effect”. We find for 

ths componerts of this field 

- Iyl Jy2 - x2 + z2 + c2 1 
I 

pogp IG - PI2 E c---x 
vc x 

EOC 
2 G2 + p2 

P,gP 
E =+- rd - PI2 

“C Y 2 
EOC 

G2 + p2 y 

(241 

(251 

The field due to the presence of the vacuum chamber 

is everywhere linear, it reduces the field due to the 

isolated beam in the direction parallel to the major 

axis and increases the isolated beam field in the 

direction parallel to the minor axis. 

3. THE NON-UNIFORM BEAM 

We now allow the density-distribution to be 

n-dependent and make two assumptions : 

al With the exception of a scaling factor (which will 

depend on the density distribution). we assume that in 

the Laplace region, the potential is the same as inthe 

case of a uniform beam. 

bl We assume that, as in the case of a uniform beam, 

only the second harmonic of y will survive in the 

Fourier expansion of the potential distribution. 

If we can solve Laplace’s and Poisson’s equa- 

tions on the basis of these assumptions and if we can 

make these solutions obey all boundary conditions, we 

shall have solved the potential problem by virtue of 

the uniqueness theorem. 

According to the first assumption we write for 

the Laplace potential 

2 

I 

sh2Cri, - nl 

@L-- o $K rl,-n- 2chZn, 
coszy, (261 

where only K is assumed to depend on p(n). According to 

the second assumption we put 

+P 
= G[rll + H:nlcosZy (271 

Repiacing these values in Eq (91 we can separate 

Poisson’s equation into 
2 

H” -4,- z !?i$- 

0 
[281 
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and 
(29) 

Solving these equations and taking into account the 

boundary conditions one finds for the potential 
6 

c2 

i [ 

sh+l 

1 i 

52 

+=B’o C[C*) E,-c2- 
CM, 

COS$ + C(uldu 

+ [mchc - mshhg] cosQ 
I 

5 (301 

where 5 = Zn, Q = 2Y and we have put for abbreviation 

cc51 = 
I 

5 5 

SCSI = [31 I 
0 

p($-) chsds , 
i 0 

p(f ) shsds 

m = C[C21 - ccc1 Trg- q S(S21 - SCSI (321 

Eq (301 applies to the Poisson as wall as to thaLaplace 

region. In the latter case m = s(sl = 0 and therefore 

c2 
@L = T w21 5, - 5 - 

sh@, - 51 

CM, 
COS$ 

I 
(331 

The field components are given by 

Ex = & [C(S21thS,-S(S21+S[Sl-C(S)th $ ]x 
0 

(341 

E 
Y 

= & ~S(S21-C(S21thS1-S(Sl+C(~lcoth $1~ (351 
0 

inside as wellasoutside the beam. The first two terms 

in these expressions represent the linear part of the 

field. whereas the last two terms are non-linearcontri- 

butions. If P = pg = const we have S(Sl-C[Slth 5 = 

C(Slcoth -$ -S[cl = 0 and the field is strictly linear 

Inside the beam. 

For the image fields one finds 
6 

“‘2’ [G - PI2 E E-- 
vc x 

2E0 G2 + P2 
X 

%1 [G - PI2 E =+- 
vc Y 2E~ G2 + P2 ’ 

The “reflection” of an elliptic beam in an elliptic 

vacuum chamber produces two perpendicular virtual beams 

of opposite charge. 
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