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Surmnary 

The penetration of the electro-magnetic field of 
a bunched beam through a ceramic vacuum chamber with 
a metallic coating on the inside is investigated. It 
is shown that the field will only penetrate the 
chamber if the thickness of the metallic coating is 
small as compared to the square of the skin depth in 
the metal, divided by the thickness of the ceramics, 
If, in addition, the chamber is surrounded by ferrite, 
as used in beam monitors, the field penetration is 
further reduced. The field outside of the chamber and 
the power losses in the metallic layer are calculated. 
It turns out that these losses can be larger by orders 
of magnitude than the losses in a pure metallic vacuum 
chamber. 

Introduction 

Ceramic vacuum chambers are used for beam moni- 
tors and for injection and feedback systems. To 
prevent an accumulation of static charge and to avoid 
discontinuities in the chamber, which can lead to beam 
instabilities, a conductive coating is provided on the 
inside of the chamber. With respect to instabilities, 
the thickness of the coating should be as large as 
possible. On the other hand, the coating reduces the 
sensitivity of a beam monitor. To find a compromise 
one has to know the attenuation of the electromagnetic 
field of the beam by the coating. Another important 
problem are the ohmic power losses which are caused 
by a bunched beam in a metallic coating. 

The condition, that the field will penetrate the 
coating if the thickness of the coating is smaller 
than the skin depth, is not valid for relativistic 
particle beams. Since the velocitiy of light in the 
ceramics is smaller than the velocity of the circula- 
ting particles, the transverse electric field of the 
beam is rotated, and a longitudinal field component 
appears. The longitudinal field drives currents in 
the coating which shield the field of the beam and 
which lead to ohmic power losses. Additionally they 
act on the beam and change the synchrotron oscillation 
potential'). 

The calculation shows that the field will only 
penetrate the chamber if the thickness of the coating 
is small as compared to the square of the skin depth, 
divided by the thickness of the ceramics. If the 
thickness of the coating is larger than that critical 
value, the total mirror current will run in the 
coating, also if the thickness is much smaller than 
the skin depth. In that case the power losses can be 
larger by orders of magnitude than the losses in a 
pure metallic vacuum chamber. 

Calculation of the Electromagnetic Fields 

For the calculation of the fields we assume the 
model shown in Fig. I with 4 different regions: 

I) Vacuum 

2) Metal 

3) Ceramics 

4) Air or Ferrite 

Outside of region 4 we assume a shielding with an 
infinite conducticity. The calculation shows that the 
results are not changed, within our approximation, if 
the shielding is removed. 

The bunch may be represented by a line current 
which has a gaussian distribution in longitudinal 
direction. The density distribution of the charge is 
then given by 

Nbe s(t 2) =- 
"'2710s 

(1) 

with N b = number of particles per bunch, e = electron 
charge, s = longitudinal coordinate, os = standard 
deviation, v = velocity of the bunch 

The distribution of a single bunch can be expressed by 
a Fourier integral 

m 
P(t 2) =I 

i G -m 
s(o) exp { -iw(t - t)] dw (2) 

where the Fourier transform is given by 

Nbe u%2 
i;(o) = - 

dz7v 
exp { - 2 

2v2 
1 (3) 

The field components can now be calculated for each 
frequency u), and the total field can be expressed by 
a Fourier integral. The results will show that the 
fields drop very fast behind a bunch so that a Fourier 
integral is permissible instead of a Fourier series. 

The electromagnetic fields in the 4 different regions 
of Fig.1 can be expressed in the following form 
(r. = 0): 

rk-l <r<r: k Er = ZkHa = AkKh(akr)+BkIA(akr) (4) 

Es = i : ak(AkKo(akr)+BkIo(akr)) (5) 

with 

ak 
l/2 (6) 

Zk = : (wEk + iok) -1 
(7) 

~~s,'~lt:~nS~~~~~tivity and IO and Ko are the modified 
. The constant Al is determined such 

that for small r the field is that of a line current: 

Al=-; S(d) (8) 
0 

The other constants Ak and Bk are determined such that 

Es and Ho are continuous at the boundaries r = rk. To 
simplify the results we introduce the following 
approximations 

dS 
cc r I' O‘s ' 

where d s is the skin depth in the metallic coating 

ds = 42 
wIIp2 ’ (9) 

r2-rl --< I, 
rl 

Fig. I 
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r3 (r4-r3) (u4r- I ) 

2u34r 

with cjr = E3/Eo and u4r = L4/Uo. The last 4 relations 

make sure that the bunch spectrum has no frequencies 
which lead to resonances in the chamber and chamber 
walls. 

With these approximations one obtains for the 
longitudinal field in region I) 

_ 
Es = e 

ZoSP Cd 

1 +a2r, S/P~~ tanha2(r2-r ,) 

with 

zO 
= qq = 376.7 R 

and 

with I 
b 

= bunch current, E = mean radius of the machine, 

r(3/4) = 1.2254.., 

The voltage u drops exponentially with (r2-rl)/ds. 

The longitudinal field Es is calculated in ‘) and is 
not discussed here. 

b) K2-Kl << ds 

This is the case where the field of the beam either 
totally or partially penetrates the chamber wall. 
Eq. (10) becomes 

Es = 2 
zosP 

I-iwuoo2r,S(r2-rl) 
(16) 

(10) 

A Fourier transformation of Eq. (16) gives the 
total longitudinal electric field in region I) and 
also in the coating. 

Es = Eso(f~“2e(~+~~212 erfc (u+v) - V)e -u212 (17) 
A 

s = (l- * 2nF + (~~~-1) 9.n + (12) 
2 

The voltage d used for a beam monitor is measured 
in a loop with the length 9, and the height K -r in 
region 4). The absolute value of the voltage4is3given 
by 

151 = 1~~ jr4 1’ >da drl 

r3 b 

Jsin(nklh)PIu 4r 

ntojcosha2(r2-rl)+a2rlS/ur2sinha2(r2-rl)\ ’ 

where X = 2nc/w is the wave length. 

We can now distinguish two cases: 

(13) 

a) r2-r, >> ds 

This case represents a pure metallic vacuum chamber. 
Eq. (IO) becomes 

Es = 
w2rZoP 

(14) 
2nr,a2 

and the power losses are given by 

p = - v2 E-ado 

Ifp /zJJ zr 
= 

31.2 
J- 

2nrlas 2u2 
3;) (15) 

with 

IbZOE s 0 R’ s-vt 
E =- I v=--L, u=- 

so a-u2 
rlSZO 

u 
S 

S 

and 

R’ = 
1 

02(r2-r ,) 

R’ is the resistance of a square area of the coating. 
erfc is the complemented error function. Fig.2 shows 
Es for different values of V, i.e. for different 

values of 02(r2-rl), 
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Fig.2 Longitudinal electric field 
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The power losses are obtained from Eq.(16) and voltage is reduced due to the metallic coating. It 
can be written in the form can be written in the form 

P= 
zol; eiis 

(V - GV2ev2 erfc(V)) (18) 
2cf 

Fig.3 shows the power losses for the following PETRA 
parameters: 

1 bunch with 20 m4, g = 367 m, r:, = 37 mm, r3 = 43 mm, 

‘3r = 9, Phr = 1, 
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with 

zor 1 
x=27- s=2t.C.i.r s 

R"r '2rds2 
1 

(20) 

If r,S z r3-r2, one obtains with u2= = 1 the 

simple expression 

x=2 
(r2-r,) (r3-r2) 

d; 

Fig.4 shows the reduction of /d[ for different values 
of x. 
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Fig.3 Power losses as a function of l/R' = (r2-r,)*u 
2 

0.01 
On the right hand side the 4 curves asymptotically 
approach the losses of a metallic vacuum chamber given 
by Eq.(l5). 

From Eqs.(l2) and (18) follows that the power 
losses can become larger if there is ferrite in 
region 4). 

The voltage iti/ follows from gq.(13): 

16 = 
u4= (sin(sk/X)i 1 

I’ -----~- (19) 
rcuil+(wuoo2r1S(r2-r~))2 

It is convenient to consider the factor by which the I) A. Piwinski, DESY 72/72 (1972) 
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Fig.4 Attenuation of the field as a function of I/R' 
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