IEEE Transactions on Nuclear Science, Vol.NS-24, No.3, June 1971

mechanical and thermal stresses in superconducting accelerator and beam-line magnets

S.C. Snowdon
Fermi National Accelerator Laboratory*
P.O. Box 500, Batavia, Illinojs 60510

Introduction

A solution to a similar problem has been given previously in which the magnetic field was generated by two sheet currents varying as cosine theta. One sheet current was located at the boundary between the innermost cylinder and the middle cylinder of structural material. The other sheet was located at the boundary between the middle cylinder and the outermost cylinder of structural material. The present note addresses the problem of improving the representation of the magnet excitation by replacing the two current sheets with a thick cosine theta current distribution in the middle structural region.

Equation for Elastic Displacement

If $\overrightarrow{\mathrm{u}}$ is the displacement vector and the body forces are derived from the Lorentz force then ${ }^{2}$

$$
\begin{equation*}
\nabla \times \nabla \times \vec{u}-2 \frac{1-v}{1-2 v} \nabla(\nabla \cdot \vec{u})=2 \frac{1+v}{E} J \times \vec{B}, \tag{1}
\end{equation*}
$$

where E is Young's Modulus, v is Poisson's ratio, \vec{J} is the current density and \vec{B} is the magnetic induction.

Generalized Plane Strain Approximation

For simplicity consider only the case for which $u_{z}=\varepsilon_{z z} z$ with $E_{z z}=$ constant. The remaining components are considered to be functions of (r, θ) only. This is consistent with an excitation in which J_{z} is the only component of current density. Hence Eq. (1) becomes
$\frac{1}{r} \frac{\partial}{\partial \theta}\left[\frac{1}{r} \frac{\partial}{\partial c}\left(r u_{\theta}\right)-\frac{1}{r} \frac{\partial u_{r}}{\partial \theta}\right]-\beta \frac{\partial}{\partial r}\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r u_{r}\right)+\frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta}\right]=-2 \frac{1+v}{E} J_{z} B_{\theta}$,
$-\frac{\partial}{\partial r}\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r u_{\theta}\right)-\frac{1}{r} \frac{\partial u_{r}}{\partial \theta}\right]-\beta \frac{1}{r} \frac{\partial}{\partial \theta}\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r u_{r}\right)+\frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta}\right]=2 \frac{1+\nu}{E} J_{z} B_{r}$,
where

$$
\begin{equation*}
\beta=2 \frac{1-v}{1-2 v} . \tag{3}
\end{equation*}
$$

Force on Thick Cosine Theta Conductor

By definition a thick cosine theta conductor carries an axial current between two radii (b, c) with a current density that varies as

$$
\begin{equation*}
J_{z}=J_{0} \cos \theta . \text { (emu) } \tag{5}
\end{equation*}
$$

From this it follows ${ }^{3}$ that

$$
\begin{align*}
& J_{z} B_{\theta}=\frac{\pi}{3} J_{0}^{2}\left[4 r-3 \lambda-b^{3} r^{-2}\right](1+\cos 2 \theta), \tag{6}\\
& J_{z} B_{r}=\frac{\pi}{3} J_{0}^{2}\left[2 r-3 \lambda+b^{3} r^{-2}\right] \sin 2 \theta, \tag{7}
\end{align*}
$$

where for convenience in these and subsequent formulas

$$
\begin{equation*}
\lambda=c+\frac{1}{3}\left(c^{3}-b^{3}\right) r_{s}^{-2} \tag{8}
\end{equation*}
$$

[^0]the radius of the iron shield being r_{s}.

Form of Solution

Equations (6) and (7) indicate that the form of the displacement within the conductor may be taken as

$$
\begin{equation*}
u_{r}=P_{0}(r)+P_{2}(r) \cos 2 \theta \quad u_{\theta}=Q_{2}(r) \sin 2 \theta \tag{9}
\end{equation*}
$$

Substituting into Eqs. (2-3) gives

$$
\begin{gather*}
-\beta \frac{d}{d r}\left[\frac{1}{r} \frac{d}{d r}\left(r P_{0}\right)\right]=-\mu\left[4 r-3 \lambda-b^{3} r^{-2}\right], \tag{10}\\
\frac{4}{2} P_{2}-\frac{d}{d r}\left[\frac{1}{r} \frac{d}{d r}\left(r P_{2}\right)\right]+\frac{2}{r^{2}} \frac{d}{d r}\left(r Q_{2}\right)-2 \beta \frac{d}{d r}\left(\frac{Q_{2}}{r}\right)= \\
-\mu\left[4 r-3 \lambda-b^{3} r^{-2}\right], \tag{11}\\
-2 \frac{d}{d r}\left(\frac{P_{2}}{r}\right)+\frac{2 \beta}{r^{2}} \frac{d}{d r}\left(r H_{2}\right)-\frac{d}{d r}\left[\frac{1}{r} \frac{d}{d r}\left(r Q_{2}\right)\right]+\frac{4 \beta}{r^{2}} Q_{2}=
\end{gather*}
$$

$$
\left.\mu_{-}^{\Gamma} 2 r-3 \lambda+b^{3} r^{-2}\right]
$$

where again for convenience

$$
\begin{equation*}
\mu=2 \frac{1+v}{E} \frac{\pi}{3} s_{0}^{2} \tag{13}
\end{equation*}
$$

Solutions of the Homogeneous Equation
In general these solutions are of the form

$$
\begin{equation*}
P_{0}=A r^{-1}+B r \quad P_{2}=C r^{p} \quad Q_{2}=D r^{P} \tag{14}
\end{equation*}
$$

where p is found by substituting into Eqs. (11-12) to obtain

$$
\begin{align*}
& {\left[4-\beta\left(p^{2}-1\right)\right] C+2[p+1-\beta(p-1)] D=0} \tag{15}\\
& 2[-p+1+\beta(p+1)] C-\left[p^{2}-1-4 \beta\right] D=0 \tag{16}
\end{align*}
$$

The determinant of the coefficients is

$$
\begin{equation*}
\Delta(p)=\beta\left(p^{2}-1\right)\left(p^{2}-9\right) \tag{17}
\end{equation*}
$$

Setting this equal to zero gives $p= \pm 1, \pm 3$. Hence there are four solutions which must be added together to give

$$
\begin{align*}
& P_{2}=-D_{1} r-\beta D_{2} r^{-1}-\frac{2-B}{1-2 \beta} D_{3} r^{3}+D_{4} r^{-3} \tag{18}\\
& Q_{2}=D_{1} r+D_{2} r^{-1}+D_{3} r^{3}+D_{4} r^{-3} \tag{19}
\end{align*}
$$

Thus the homogeneous solutions are seen to be identical in form with those found previously ${ }^{\text {l }}$ after it is recognized that ($u_{r}=\frac{1}{3}$ GrInr, $u_{\theta}=G r \theta$) the solution describing pre-tension ${ }^{3}$ may also be added.

Particular Solution
Since each term of the RHS of Eq. (10) is of the
form $B r^{q}$, one may take for P_{0} in Eq, (9): $P_{0}=A r^{P}$. Adding the contributions for $\mathrm{q}=1,0,-2$ gives

$$
\begin{equation*}
P_{o}=\frac{\mu}{\beta}\left[\frac{1}{2} r^{3}-\lambda r^{2}+b^{3}\right] . \tag{20}
\end{equation*}
$$

For the remainder of the solution one may take $\left(\begin{array}{l}P_{2} \\ Q_{2} \\ C \\ D\end{array}\right) r^{P}$ corresponding to $\binom{E}{F} r^{q}$ as a term on the RHS of Eqs. (11-12). Substituting into Eqs. (11-12) and inverting gives $p=q+2$ and

$$
\binom{C}{D}=\frac{1}{\Delta(p)}\left(\begin{array}{lc}
-p^{2}+1+4 \beta & -2[p+1-\beta(p-1)] \tag{21}\\
-2[-p+1+\beta(p+1)] & 4-\beta\left(p^{2}-1\right)
\end{array}\right)\binom{E}{F} .
$$

Note that the q-values of interest are $q=1,0,-2$ or $\mathrm{p}=3,2,0$. Equation (21) can only provide solutions for $p=2$, 0 since $p=3$ gives $\Delta(3)=0$. In this case one considers

$$
\begin{equation*}
P_{2}=(A+B l n r) r^{3} \quad Q_{2}=(C+D \operatorname{lnr}) r^{3} \tag{22}
\end{equation*}
$$

Substituting these into Eqs. (11-12) yields terms in r and rinr. The terms in rlnr vanish in both equations if

$$
\begin{equation*}
(1-2 \beta) B+(2-\beta) D=0 . \tag{2}
\end{equation*}
$$

Equating the remalning coefficients of r then gives two equations which when subtracted yields

$$
\begin{equation*}
(1+2 \beta) B+(2+\beta) D=\mu \text {. } \tag{24}
\end{equation*}
$$

Thus

$$
\begin{equation*}
B=\frac{1}{6} \frac{\mu}{\beta}(2-\beta) \quad D=-\frac{1}{6} \frac{\mu}{\beta}(1-2 \beta) \tag{25}
\end{equation*}
$$

Using these values for (B, D) the two equations for (A, C) are identical. Since (A, C) are coefficients of r^{3} terms already included in the homogeneous solution one may choose one relation between A and C arbitrarily, Let $C=-2 A$ for convenience. Then

$$
\begin{equation*}
A=-\frac{1}{36} \frac{\mu}{B}\left(1-9 \beta-\beta^{2}\right) \quad C=\frac{1}{18} \frac{\mu}{B}\left(1-9 \beta-\beta^{2}\right) . \tag{26}
\end{equation*}
$$

Displacement

The incremental displacements to be added to the homogeneous terms are from Eqs. (20-26)

$$
\begin{gather*}
\Delta u_{r}=\frac{\mu}{\beta} \frac{1}{2} r^{3}-\lambda r^{2}+b^{3}+\left[-\frac{1}{9}(1-2 \beta) b^{3}-\frac{1}{5}(3+2 \beta) \lambda r^{2}\right. \\
\left.\left.-\frac{1}{36}\left(1-9 \beta-\beta^{2}\right) r^{3}+\frac{1}{6}(2-\beta) r^{3} 1 n r\right] \cos 2 \theta\right\} \tag{27}\\
\Delta u_{\theta}=\frac{\mu}{\beta}\left\{\frac{1}{9}(2-\beta) b^{3}+\frac{1}{5}(2+3 \beta) \lambda r^{2}\right. \\
\left.+\frac{1}{18}\left(1-9 \beta-\beta^{2}\right) r^{3}-\frac{1}{6}(1-2 \beta) r^{3} 1 n r\right\} \sin 2 \theta . \tag{28}\\
\text { Stress }
\end{gather*}
$$

The incremental strain to be added to the homogeneous solution is found from Eqs. (27-28) using Eqs. (61-63) of Ref. (1). Then using Eqs. (48-50) from Ref. (1) one has after inverting

$$
\begin{align*}
& \Delta \sigma_{r r}=\frac{E}{1+\nu}\left[\frac{1}{2} \beta \Delta \varepsilon_{r r}-\frac{1}{2}(2-\beta) \Delta \varepsilon_{\theta \theta}\right] \tag{29}\\
& \Delta \sigma_{\theta \theta}=\frac{E}{1+\nu}\left[-\frac{1}{2}(2-\beta) \Delta \varepsilon_{r r}+\frac{1}{2} B \Delta \varepsilon_{\theta \theta}\right] \tag{30}\\
& \Delta \sigma_{r \theta}=\frac{E}{1+\nu} \Delta \varepsilon_{r \theta} . \tag{31}
\end{align*}
$$

The result is

$$
\begin{align*}
& \Delta \sigma_{r r}=\frac{E}{1+\nu} \frac{\mu}{\beta}\{ -\frac{1}{2}(1-2 \beta) r^{2}+\frac{1}{2}(2-3 \beta) \lambda r-\frac{1}{2}(2-\beta) b^{3} r^{-1} \\
&+\left[-\frac{1}{6}(2-\beta) b^{3} r^{-1}-\frac{1}{10}(2+13 \beta) \lambda r\right. \\
&\left.\left.-\frac{1}{12}(1-11 \beta) r^{2}\right] \cos 2 \theta\right\}, \tag{32}\\
& \Delta \sigma_{\theta \theta}=\frac{E}{1+\nu} \frac{\mu}{\beta}\left\{-\frac{1}{2}(3-2 \beta) r^{2}+\frac{1}{2}(4-3 \beta) \lambda r+\frac{1}{2} \beta b^{3} r^{-1}\right. \\
&+\left[\frac{1}{6} b^{3} r^{-1}+\frac{3}{10}(4+\beta) \lambda r\right. \\
&\left.\left.-\frac{1}{12}\left(3+5 \beta+2 \beta^{2}\right) r^{2}-(1-\beta) r^{2} 1 n r\right] \cos 2 \theta\right\} \tag{3}
\end{align*}
$$

$$
\begin{align*}
\Delta \sigma_{r 0}=\frac{E}{1+\nu} \frac{\mu}{\beta}\{ & \left\{-\frac{1}{6} \beta b^{3} r^{-1}+\frac{1}{10}(8+7 \beta) \lambda r\right. \\
& \left.-\frac{1}{12} \beta(7+\beta) r^{2}-\frac{1}{2}(1-\beta) r^{2} 1 n r\right\} \sin 2 \theta . \tag{34}
\end{align*}
$$

Boundary Conditions

Since the form of the solution of the homogeneous equation is identical with that of Ref. (1) one may utilize Eqs. (55-65) of that reference. To these equations add the particular solutions found here to give the correct expressions for displacement, strain and stress. Apart from the special condition related to pre-tension and discussed in Ref. (1) the boundary conditions are as follows:

At $r=a$, the innermost radius $\sigma_{r r}^{(+)}=\sigma_{r \theta}^{(+)}=0$

At $\mathbf{r}=\mathrm{b}$

$$
\begin{equation*}
\sigma_{r r}^{(+)}-\sigma_{r r}^{(-)}=\sigma_{r \theta}^{(+)}-\sigma_{r \theta}^{(-)}=0 \tag{36}
\end{equation*}
$$

$$
\begin{equation*}
u_{r}^{(+)}-u_{r}^{(-)}=u_{\theta}^{(+)}-u_{\theta}^{(-)}=0 \tag{37}
\end{equation*}
$$

At $r=c$

$$
\begin{equation*}
\sigma_{r r}^{(+)}-\sigma_{r r}^{(-)}=\sigma_{r \theta}^{(+)}-\sigma_{r \theta}^{(-)}=0 \tag{38}
\end{equation*}
$$

$$
\begin{equation*}
u_{r}^{(+)}-u_{r}^{(-)}=u_{\theta}^{(+)}-u_{\theta}^{(-)}=0 \tag{39}
\end{equation*}
$$

At $r=d$, the outermost radius $\sigma_{r r}^{(-)}=\sigma_{r \theta}^{(-)}=0$

Use of the Virial Theorem

The virial theorem as discussed in Ref. (1) is
used to obtain enough conditions to permit the longitudinal strain $E_{z z}$ to be determined. The only change here is to evaluate the magnetic energy and the Maxwell stress tensor using fields ${ }^{3}$ for the thick cosine theta conductor. Hence the virial theorem becomes

$$
\begin{align*}
& \iint\left(\sigma_{r r}+\sigma_{\theta \theta}+\sigma_{z z}\right) r d r d \theta= \\
& \frac{1}{3} \pi^{2} J_{0}^{2}\left\{-\frac{1}{2}\left(c^{4}-b^{4}\right)+\left[c+\left(c^{3}-b^{3}\right) r_{s}^{-2}\right]\left(c^{3}-b^{3}\right)\right. \\
& \left.-b^{3}(c-b)\right\} \cdot \text { (dynes) } \tag{41}
\end{align*}
$$

References

1. S.C. Snowdon, Mechanical and Thermal Stresses in in Doubler Dipole Magnets ${ }^{\prime \prime}$, Proc. of Conf. on Computation of Magnetic Fields (COMPUMAG), Oxford, 1976 See also Fermilab FN-284, Oct. 1975
2. R.W. Little, Elasticity, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1964, p. 77
3. J.P. Blewett, "Iron Shielding for Air Core Magnets" Proc. of 1968 Summer Study on Superconducting Devices and Accelerators, Brookhaven National Laboratory, 1968, p. 1042

[^0]: *Operated by the Universities Research Association, lnc., under contract with the Energy Research and Development Administration.

