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Summary 

We discuss an original approach for the treatment 
of the longitudinal stability of high-intensity proton 
and electron bunches. The general analysis is divided 
in three steps. First, we search for a stationary 
bunch distribution which is matched to the external 
RF forces as well as to the current dependent induced 
fields. We question the existence of such distribu- 
tion. Second, we check the stability of the stationary 
solution by applying a small perturbation and observing 
whether this is initially damped or not. At this point 
a stability condition is derived in terms of current, 
surrolurding impedance and bunch size. In the last 
step one should question what happens to the beam in 
case the stability condition is not satisfied. The 
problem here is the determination of the final bunch 
configuration. We will not deal much with this step. 
We observe that the "overshoot formula" which is de- 
rived from numerical calculation' is usually applied 
to proton bunches', whereas commonly the assumption is 
made an electron bunch matches always its size to the 
stability condition? 

The originality of our approach stays in the com- 
bination of the three steps. All previous theories 
either consider only the first step4 or combine the 
second and third ones but disregard the first2*3*5. 
Sometimes, in the latter case, the modification of the 
potential well is introduced ad hoc? 

Our theory applies to the case of a real frequency 
independent impedance. 

The Stationary Distribution 

The starting point is the Fokker-Plank equation 

where J, is the particle distribution in @ and w, r$ the 
phase angle in RF radians unit and w the angular momen- 
tun canonically conjugated to $I. In the case of a 
proton bunch, ?* and D-+0, and Eq. (1) reduce to the 
Vlasov equation. 

The equations of motion are 

4 =aHfaw and 9 = ~~ -aH/a$ . 

With a proper scaling it is possible to give the di- 
mension of a frequency to w and to write for the 
Hamiltonian 

H=+w'+" ext(9) + USC($) 

where U,,t is the external RF potential function and 
USC the beam induced potential function in the "sta- 
tionary" configurations. Finally Fp is the field 
induced by a perturbation around the bunch. 

A stationary solution does not depend explicitly 
on the time, so that 

F 
P 

= 0 and a$ia t = 0 . 

*Operated by the Universities Research Association, 
Inc., under contract with the Energy Research and 
Development Administration. 

For a proton bunch one has simply 

- w .a+ ~~+~=o. 

The general solution of this equation is any function 
of the Hamiltonian H. Thus for the case of a proton 
bunch there is an infinite variety of stationary dis- 
tributions, whereas in the case of an electron bunch 
there is only one 

$ = ce-aH (2) 

where a = l/?D and C is calculated by taking 

fl$d$dw = 1. 

Observe that the electron bunch width does not 
depend on the current but the normalization constant 
does. Also (2) can be regarded as a special case of a 
proton bunch. 

Let g($) = /$dw denote the longitudinal distri- 
bution. We can write 

U 
SC = -enhI/' R($-$')g($')d$' 

where n = haw,'/E, Q is the momentum compaction factor, 
h the RF harmonic number, w. the angular revolutionfre- 
quency and E the total energy. I is the bunch average 
current and R is a Kernel function with the dimension 
of an impedance. One easily obtains by integrating 
both sides of (2) the following integral equation for 
P(G) 

g(q) = QCe 
-aU ext + erWd R(+$')g($')d$' 

. (3) 

The degree of difficilty for the solution of this 
equation depends on the-choice for R($-$I'). Eq. (3) 
has always a physical solution(*) for R=Z,realconstant 

-aU 
Ce ext 

aenhIZC!' e 
-aU 

eXt d$ 

In the parabolic approximation U,xt = Ro2Q2/2 with Ro 
the angular frequency of the phase oscillations for 
I=O,wederive - 

C = 5 tanh (aenhIZj2) 
271 aenhIZ/2 

The distribution (4) is an asymmetric 
with a long, backward tail. 

(5) 

bell function 

Proton Bunches and Electron Bunches 

When a stationary solution exists the question 
arises whether it is stable or not. The answer is 
found by adding a perturbation. Below some current 
the perturbation is damped. The threshold value will 
depend on machine parameters and bunch size. Above the 
threshold there isaninstability. Proton bunches 
likely have more than one stationary distribution. We 
have seen one above with the form (2). But it is 
obvious that one can repeat the same exercise for 
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any form. If a particular distribution like (2) be- 
comes unstable above some current, the proton bunch 
will change its initial distribution to another one 
more stable. On the other hand the electrons have only 
one stationary distribution (Z), and when this becomes 
unstable there is no other one to replace it. Thus 
what happens afterwards? One should look then for a 
time dependent solution of (1) which is bounded, name- 
ly "quasi-stationary". We will not deal further with 
this problem except observing that the electron bunch 
will continuously change its size and shape under the 
two opposite effects of the instability and the syn- 
chrotron radiation. Then one should be able to 
recognize an average beam size which (and this is our 
assumption) should match the threshold condition. 

The Effect of a Perturbation 

Write the general solution of (1) as $ = Qs+qp = 
stationary distribution function + perturbation func- 
tion. It is always possible to operate a transforma- 
tion of variables from $, w to H, K where H is the 
Hamiltonian and 

For a proton bunch the dependence of the stationary 
distribution on the current is not essential so that 
$, is completely arbitrary. Take for instance a 
water bag distribution 

K=t-l P 
d$ 

fi ' ylH-Uext-Usc 
$,‘= -2 6 (H-Ho) 

0 

H and K are canonically conjugated and are invariants 
in absence of the perturbation. Quite generally we 
can write 

“=‘-+ff-$ 

s ’ 

where v is an angle variable along a trajectory and 
0, is the,angular frequency on the trajectory. The 
following relation holds quite generally 

d, dv/dq, = R, . 

Take for the perturbation 

$, = Ap(H) expi(pv-Rt) (6) 

where R is a collective complex angular frequency. 
This represents a wave traveling around the contour of 
the bunch with mode number p. In the case of constant 
and real impedance we have 

F 
P 

= eZInhjqp dw . (7) 

Insertion of (6) and (7) in (1) gives 

w 
F 22 -i(C2-pns)ip = 
Paw 

(8) 

where we have neglected a second order term. To re- 
solve (8) we carry first an average over one phase 
oscillation. Multiply both sides by exp(iS%-ipv) and 
integrate over v. The average is taken at constant H. 
In the approximation the total potential U,xt + Us, 
is nearly parabolic, we obtain 

Q,% 
' - i(R-pSls)A = 

P 

PZA 
T A ' + D(Ap' + HA "- -$) 

7 P P (9) 

dw } e-ipu wdv. 
(10) 

Except for few trivial cases, this double integral is 
of difficult solution. The following approximation 
can be useful 

Q, = eZInh/Ap dH . 

Proton Bunches 

(11) 

Take ?* and D-+0. From (9) we derive 

then also Ap is a delta-function and Q has to be 
calculated only at H=Ho. Inserting (1 ) in (10) gives s 

R = pRs + i eZInh fio/2rHo. 

One has stability when the imaginary part of fi is 
positive. The same result can be obtained also by 
making use of (11). Then in the more general case in- 
serting (12) in (ll), one obtains the following dis- 
persion relation 

(13) 

This is our main result for the proton bunch theory. 
It disagrees with Sacherer's findings.' HerewardS 
assumes there is always only one wave traveling around 
the contour of the bunch. On top the perturbation is 
damped and antidamped on the bottom. Then he infers 
that over one phase oscillation the total effect is 
zero and an individual bunch cannot be unstable. So 
doing he believes to carry out an analogy with the 
coasting beam theory where the perturbation has two 
wave components, one "slow" and one "fast", one 
traveling on top and the other on the bottom of the 
beam, one wave damped and the other antidamped. We 
believe the analogy exists but was not properly 
applied. Also for a bunched beam there are two wave 
components moving in opposite directions around the 
contour of the bunch, one on the outside and the 
other on the inside. This can be easily seen by taking 
a hollow bunch. In the limit as=6 (H-Ho)/271 and 0 = 
Qo+Qs'H, Eq. (13) gives 

R = PRO?: JieZInp Rs'Ro/2n 

namely two solutions which correspond to the two wave 
components, one slow and the other fast, one stable 
and the other unstable. 

The dispersion relation (13) is similar to the 
one for a coasting beam and can be solved with the 
usual techniques? If one takes the distribution (2) 
then the following stability condition is derived 

where ' = d/dH and 
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0.462 AR 
IUPI < 

S 
e1 nCh 

where AR 
cy spread ;n'zi'ba?nch. 

is the angular synchrotron 
This can be expressed 

of the full width AE at half of the maximum of 
energy distribution. Eq. (14) becomes 

IZ eff'P1 < 0.861(~)($)* B 

frequen- 
in terms 
the 

where B is the ratio of the bunch length to the cir- 
cumference. The stability condition (15) is strikingly 
similar to the one obtained by Boussard' applying 
coasting beam theory to a bunched beam. In our case 

Z eff = Z/Bh' . 

The concept of efficient impedance Zeff was introduced 
first by Sacherer' 
MonthtO. 

and later by Messerschmid and 
Likely Eq. (15) can be applied to a more 

general definition of Z,ff in this sense. 

Electron Bunches 

One has to solve Eq. (9) combined to either (10) 
or (11). In the approximation Qp is constant, for 
instance, by making use of (ll), by letting 

y = Ap/arCQ 
P ' 

A = T(R-pa,) 

p = TpRs'/a and x = aH 

we change Eq. (9) to 

+ (i - $+ ii - iu)y =-<.(16) 

This equation can be solved but it is not trivial. It 
involves the Kummer'sfunctions. A dispersion relation 
is obtained from (11) 

1 = eZInhrC 
J 

ydx (17) 
0 

where y is a particular solution of (16) which goes to 
zero at least as evx for x-rm. 

The perturbation function y is a complex quantity 
with real part yr and imaginary part yi. Eq. (16) 
actually corresponds to a system of two real second- 
order differential equations. There are three param- 
eters: The mode number p, the spread factor 1-1 and the 
complex shift A = Ar + iAi. To obtain a stability 
condition one sets Ai+O- and solves (16) for a given p 
and u. From (17) we derive fyidx = 0 which is satis- 
fied by some value of A,. When this value is known, 
calling Gp(~) = IF,dx we obtain the following stability 
criterion 

1 > eZInh'rCGp(u) . (18) 

By comparing (18) to (14) we obtain in the limit T* 

T'Gp (u) + 2.16 T/l!.ll. (19) 

When u = 0, which is the case of zero frequency 
spread, one gets A, = 0. This gives yi = 0 identical- 
1~ and Yr is obtained by solving 

d+ dy 
-d-$+(l+-$+(;-&-)y =-$ r 

which is a non-trivial equation. 

Combining (18) to (5), the stability criterion 
becomes 

i Tfio Gp(u) tanh(T) < 1 . (20) 

Eq. (20) is our main result. Observe that in 
principle u depends on the bunch current, but probably 
this can be ignored. The function Gp(u) can be deter- 
mined only by solving (16). Temporarily one can use 
(19). When 2.16fio>>nlplAf& which is lisually the case. 
Eq. (20) can be transformed to 

I < 0.485 IplhlCI"E ($* 
S 

(21) 

where ws is the number of phase oscillations per turn 
and oE the natural rms width of the bunch. For a ma- 
chine like PETRA, for instance, taking Z = 60 KR and 

"S = 0.01 at 7 GeV, one obtains a safe threshold cur- 
rent of 34 mA for p = 2. At the, same time the obser- 
vations on SPEAR 11" can be explained by taking Z - 
10 KR. 

Electron Bunch Widening 

According to our assumption, Eq. (20) is to be 
used also to calculate the bunch width when the cur- 
rent is larger than the threshold value. Temporarily 
one can replace (20) with (21). Denoting with R the 
ratic of the new bunch width to the natural one, one 
has 

R = 7.86 (IZvs20z/~p~h3a3E5)1 

where IZ is in volts, E in GeV and p, the bending ra- 
dius, in meters. The dependence with the energy and 
the RF voltage seems to be in agreement with the ex- 
perimental observations". But the current dependence 
power is l/4 instead of l/3 as observed. The correct 
current dependence can be obtained likely going back 
to (20) after having properly calculated the function 
G (~1. 

R 
Observe that, eventually, the condition (20) 

s ows a saturation level for the bunch width. 

(*)The solution of (3) must be physically acceptable; 
for instance, it should be positive for any value of I$. 
Usually the existence of a physical solution is taken 
for granted'. Though attempts to solve numerical1 
showed a change of sign of g(e) above some current 

J (3) 
. 
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