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Summary 

FEC is supporting a continuing Investigation of 
the properties of high momentum, single particle or- 
bits in an azimuthally symmetric 'mirror' magnetic 
field. Results have been obtained in several areas. 
Here we report calculations leading to a Hill's equa- 
tion describing stable perturbations on midplane or- 
bits in a field dominated as to shape by its quadratic 
terms. The results of some numerical tests are also 
presented, indicating that the equation may be of use- 
ful accuracy over an Interesting range of parameters. 

The field shape assumed is, in cylindrical co- 
ordinates 

B, = 1 - aXr2 + 2az* (1) 

%- = -2arz 
and the equations of motion may be derived from the 
Lorentz force law 

$ =:xz (2) 
or from the Hamiltonfan, which can bepwritten 

,H = + (? + ;*) + Ueff(r,z) = F '(3) 

Ll eff= +2!. -A)2 
r 

A=- : Jr r B, dr 0 

Here A is the magnetic vector potential (having only 
an azimuthal component) and p+ is the (conserved) com- 
ponent of the angular momentum canonically conjugate 
to the azimuthal coordinate. Also, we have adopted 
units in which mass, m. and zero order (a = 0) gyro- 
frequency, qB,/mc, are set equal to unity. This 
means that rr z, ?, and i have units of length (e.g., 
VA = [P + v ql'* becomes the zero order gyroradius 
of a midplan: orbit.) The parameter a is typically 
given by o -l/L2 where L is the radial dimension of 
the device and the quantity av* in these units is 
dimensionless, being typically 5.1. 

One more preparatory item. The angular momentum 
turns out to be conveniently expressed in terms of an 
impact parameter, b, defined from 

PO = vb + b A(b,O). (6) 
This has at least two solutions which are denoted by b 
and b, in order of their magnitude. 

In order to deal with the orbits analytically, 
it proves helpful to make a change of Independent var- 
iable from t to an angle,fl, which is a function of the 
coordinates and velocity components. A definition of 
8 has been found, for orbits of interest, with the 
properties that, first, 6 advances smoothly with t (no 
wild variations in 6 and, in particular, never b = 0), 
second, 6 corresponds to an intuitive notion of phase 
of radial oscillation (as distinguished from phase of 
gyration), and third, when only the linear terms in z 
and 2 are retained, 8 reduces to a simple form, namely 

-rr Bz Tan 6 = - 
v2+rv B (7) 

$2 

After a fair amount of algebra, one can solve ap- 
proximately for r(0) using (3) and (7) and thus remove 
r and ; from the parameter space, leaving {(e,z,i)] as 
the space in which we work. In actual fact, one only 
solves for r(6) to specified order in a , treated as a 
smallness parameter. It should be noted that expansion 
of all relevant quantities in powers of a is assumed 
valid and convergent. Convergence, however, is far 
from guaranteed, let alone that the first or first few 
terms should suffice. Justification at this time rests 
simply on the fact that it appears to work. 

The quantity B plays a central role, appearing as it 
does in 

----id d 
dt de (8) 

Hence some effort has been expended to obtain an ac- 
curate form of b(e), starting from (7). The result ob- 
tained is 

A = -1 + ah[2v$+ 2p,+ Zv,m Case + 2vz Sin261 (9) 
in which 
VcE v(1 + akv2) 

b2 
(10) 

p,' bv, + 2 + uX[4vz + 8bvz + 6b2v: + 2b3vc] 

If CI is set to zero in (lo), then (9) contains no terms 
of o (a2) or higher. Witha non zero in (lo), It ap- 
pears that the dominant part of the contribution of 
higher order terms is accounted for, primarily in p,, 
which was obtained by substituting b, for b In 
p4 (b;a=O). This has been tested numerically by inte- 
gration of 

e + 271 
it = I de - (11) 

e E, 

and comparison to the period obtained by direct numer- 
ical integration of the equations of motion for mid- 
plane orbits at various energies and angular momenta. 
Without the 'correction terms' in (lo), the deviations 
amounted to as much as 10% of the shape dependent part 
of 6 (the portion which vanishes when a does.) With 
correction terms, typical deviations amount to tenths 
of a per cent of the shape dependent part or parts in 
lo4 of the total. 

Of course not all cases were tested. For 
sufficiently large v and/or b it is known that (9) must 
fail. As the-radial confinement limit is approached, 
we must have e-+0. For b = 0 and X = 1 this limit cor- 
responds to v, = .2722/G and 6+-O is not indicated by 
(9). Tests were performed at b = 0 with v in the 
.14/G to .17/G and, at v = .153/G with b in the 

range 

range + . l/d?. These ranges were chosen as being of 
particular Interest for the migma experimental program. 

Using (9) and (10) we may proceed to the linearized 
equation of motion for perturbations on the midplane 
orbit. From (3) and (4) we have 

020 

i’ = -2az 2 (.?I 
2 

- p 
6 -ha t4) 

and 

(12) 
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Z” E (i'li2)-(z'/e)(de/d6) (13) 

Rather than obtaining z" which will involve terms pro- 
portional to both s and z', it is convenient to use the 
standard transformation 

z=we QI 
(14) 

with 

Q = (-l/t$(df&dO) (15) 

so as to eliminate the first derivative term. It 
should be noted that z and w are quite 'similar' since 
Q contains only terms of order CL and higher. 

the 

o= 

a21 

After a good deal of algebra, we obtain, without 
correction terms of (lo), 
w" + w{a[2v2+ (2+X)(v'+vb)CosB - 2v2hCos26] + 
[(20-X)(v4+v3b+ v2b2/2) 

+ cose((41 + 2A) z4 + (61 + 21);3b + 4v2b2+ 4vb3) 

+ cos2O($d++ (8 + A) v3b+(4 + ;) v2b2) 

+ cos3e(- 1 -x)(v4+v3b) 
XV 2 

+ Cos46/-)I) + o(a') 
2 

(16) 

When the correction terms of (10) are included, their 
effect is to add a term, T, to the r.h.s. of (16) where 
T = a2),w{cose[$ + + + 5b2v2+ vb3] 

- 8 v4 co.%?0 - ; cos3e[v4 + v3blI. (17) 

As will be evident momentarily, there is reason to be- 
lieve that addition of this term results in accounting 
for the larger part of the a2 dependence, but not all 
of it. 

The parameter h , when not equal to 1, requires a 
local source of magnetic field and might be thought of 
as a crude means of approximating the effect of a dia- 
magnetic contribution. It is interesting, at any fate, 
to note that X=0 (flat net field, radially) gives BE-1 
and simplifies (16) drastically to 

0 a w" + wa[2vZ+ 2 (v2+ vb)Cose] (18) 
which is a simple Mathieu equation. 

The general case of (16) is a Hill equation and 
not so simple. Techniques for dealing with a Hill eq- 
uation are to be found in the literature, however, and 
McLachlan' gives a discussion in Chapter 6. 

Noting that ev2 occurs, in some cases, multiplied 
by rather large numbers (20 and 41), one is led to 
question whether the approach works at all. It might 
happen that many more powers of a are needed. To test 
this, we may calculate the curves in the (v,b) plane 
corresponding to the boundaries between zones of stable 
and unstable solutions and compare to results of orbit 
integration. The full calculation is somewhat painful 
unless computerized, hence only one point on the bound- 
ary of the first unstable zone is calculated. 

When Hill's equation is written in the form 

Y ‘1 + y [e. +ze 
.,12n 

c0s2ne] =0, 

the solutions are known to have the form 

(19) 

m 

y+=z” n=--m 2r ce c e + 2ine (20) 

and the complete solution becomes linearly unstable. 
Using techniques discussed in McLachlan, we find the 
critical value of v at which this first occurs (for 
b=O, i=l) to be vcrit = .2215/G, without correction 
terms, and Vcrit e .2182/G with. This is to be com- 
pared to a determination of vcr.t b direct integration 
of orbits, yielding v it = .2158/Z. 
amount to 2.6% and l.!$ respectively. 

The deviations 

Clearly, this leaves some room fo? lmprovementr 
and efforts are under way in that direction. But this 
level of accuracy, if maintained for other calculations 
related to the solutions of (16). will serve quite well 
for most purposes. It may be worth noting that the 
value of vcrit just calculated turns out to be 80% of 
the maximum which can be confined (at b=O) in a field ' 
of the shape given by 1) with X=1 (external field 
only.) Thus a reasonable expectation exists, to be 
tested, that 'most' stable perturbations on the mid- 
plane orbit are adequately described by the Hill equa- 
tion prescribed by (16) and (17): 

It should be noted that the near midplane orbits 
corresponding to v>vcrit are not adequately described 
by (16). Most such orbits are linearly unstable and 
enter regions of large, z, z' so that the nonlinear 
terms become important. Numerical integrations done by 
several researchers indicate that such orbits are typ- 
ically bounded. These Integrations seem to Indicate 
that, over a wide range of parameters! orbits are 
bounded by invariant tori in the ((z,z,e)) space. That 
is, tori with the property that an orbit initiated on 
the surface of the torus remains forever on the surface 
and those Initiated inside (outside) the torus remain 
forever inside (outside). It should be emphasized that 
this conclusion, while strongly Indicated, is inductive 
rather than deductive. Preliminary calculation of the 
parameters of the tori relevant to orbits in the first 
unstable zone have been completed (to be reported else- 
where), and the value of vcrit obtained therefrom is 
.2159, in excellent agreement with the numerical re- 
sults and that obtained from the Hill equation. 
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