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I. Introduction 

Due to field impurities in the magnets in a storage 
ring or circular accelerator the values of the betatron fre- 
quencies for a given particle in a beam are dependent upon 
the energy and betatron amplitude of the particle as well as 
the values of the energy dispersion and betatron functions at 
the magnets. A method has been developed for finding the 
values of the betatron frequencies for any particle with given 
field impurities. This method has been used to study the 
quality of several preliminary designs of some of the quad- 
rupole magnets in PEP by comparing the variations of the 
betatron frequencies over the maximum expected range of 
values of the particle energy and betatron amplitude. 

The expressions for the values of betatron frequencies 
as functions of the various beam and machine parameters 
are derived in Section II. Some of the results for the eval- 
uation of two types of the PEP magnets are presented in 
Section III. A discussion of these results is given in 
Section IV. 

II. Betatron Frequency Shifts 

In this analysis the contribution to the betatron fre- 
quency shift 5 from the equilibrium orbit shift or the beh- 
tron oscillation in the vertical direction y is ignored. The 
values of 5, and &J 
orbit of a particle in 

are functions of: x,, the equilibrium 
Th e radial direction; x p, the radial 

hetatron oscillation amplitude about xe; 17 and p, the values 
of the energy dispersion and betatron functions at the 
magnets. For a particle cvith energy E=EO+aE, we define 
6 = AE/EO with EO the design energy of the machine. 

Under these conditions the equations of motion for a 
single particle are: 
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where s is the longitudinal coordinate measured along the 
central orbit, Bp is the particle rigidity and my is the field 
error in the magnets evaluated in the median plane. 

‘l?he solution of Eq. (1) can be written as 

x = xc + x,, 
P 

ivit.h se satisfying the equation 
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along kvith the periodic condition 

Xe(s+L) = Xe( s) 

\rhcre I. is the length of one superperiod of the machine. In 
practice, the first term on the right hand side of Eq. (3) is 
small comparctl to tho second term so that we can approxi- 
ma tc SC’ by I)f 

Subtracting Eq. (3) from Eq. (1) we obtain the equation 
of motion for x P: 

d2x m (x +xe,sl-m 
A+Kx(s)xp=- y p 
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ds2 BP 
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By a suitable transformation Eq. (4) can be written in terms 
of the Courant-Synder variables1 as 

where 

and 

(5) 

v2 $/2 
x x lo) 

BP [my(xe+t JP,( 0) - aBy(xeAj 

( = xp p;l'2 
(6) 

I 

S 

O= 
ds' 

()vxpx(st) 

1 

/ 

c ds’ 
1’ =- 

X 
2n 0 

p,(s)) 

C = machine circumference. 

To find the value of Ayx we consider the amplitude and 
phase of 5: 

and 
5 = Js cos cp 

5’ = -v x Jjrsin Q, . 

These quantities satisfy the differential equations: 

dJ -= _- 2 Js sin @ F(0, ficos 4) de lJ 
X 

and 

X 
- - F(B, ,/? cos @) . 

vx,‘5 
(8) 

(7) 

Now if we ignore all resonance effects we expect that both J 
and (@ - v,O) vary slowly in 0. Thus the shift in betatron 
frequency is given by 

&x = kq - vx 

l Î- 

4a 
2 12’ d0 cTd@ cos $ F(e, ,qcos $j 

vxqTo 0 

(9) 

where the subscript 0 denotes the value of J and q’averaged 
over $ and 6. The value of this shift of course will not be 
correct for the case where &J is so large as to place the 
frequency on resonance. We define the c rresponding aver- 
age peak betatron amplitude 8,= (p, Jo) lp2. 
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By a similar analysis the value of aUy can be found 
from Eq. (2): 
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0 
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In practice it is often convenient to express the field 
errors in a power series in x. Furthermore if the n and 13 
functions do not vary appreciably over the length of the 
magnets, we can approximate the field errors by 

Sy(x, s) Y C an x”$ 6(s-si) 
n 

where si and Pi are the location and length of the ith magnet. 
Under these assumptions the values of Lk, 
by the field error in ith magnet are given i: 

and 4uy caused 
y: 

Avx= g C ankcl (‘qi)n-k (G&k-l & c 
n 

k+l (12) 

and 

Avu 
‘i Oyi 

Y -m T an lgl (6qi)n-k(‘dk-1 (n-k) !;!k-l)! ‘k-1 
1 

(13) 
where 

f 0 if k odd 
‘k = 

b-I)(k-3). . . I 
k(k-2)...2 

if k even 

(14) 

III. PEP Magnet Study 

The magnetic lattice for PEP has been designed to 
operate over a wide range of energy and configurations with 
3.8m<1;~(7.Om,.16m<~~(.2mand-2.2m~~*<Om 
where an asterisk indicates-the values at the intera;tion 
point. The low-beta interaction region is obtained by using 
a pair of strong quadrupole doublets (43 and Q2) agmme- 
trically located about the interaction point; Q3 is a vertical 
focussing magnet nearest to the interaction point and Q2 is 
a radially focussing magnet. The values of the betatron 
iunctions /-3 and $ are largest at Q3 and Q2, respectively. 
Typically 4, max is about 600 meters and 9x max is about 
200 meters. Because of these properties, the effects of the 
field errors in these magnets must be carefully assessed. 

Three designs A, B and C for the magnets Q3 and 
Y have been proposed by the magnet design group in T.RI,. 

These designs were obtained by using a computer solution 
for different pole shapes and current distributions. Due to 
the symmetry of the magnet geometry used in the designs 
the field errors normalized to the ideal l’ield value gx 
can be esprcsstd in a poi+er series as: 

(2 - 1) = ilAn(-$ (x2so, v=o) (15) 

The values of An’s depend upon the value of xc, and S unlcs5 
the circle of radius x 

a 
does not intersect the magnet poles. 

Th(b valufs used are s o\vn in Table I 

A plot of the normalized field errors is given in Fi 1. 
For each case the values of Avx and &,, are computed f ’ 
using Eqs. (12) and (13) over the region’ 0 < Ici/a, 1 < 12 and 
05 l;,/ex ( 12, where se and c~x are the st%dartl deviation 
values for gaussian distributions for the synchrontron and 
betatron motion, respectively. Some of the results for 
design B are sholcn in Figs. 2 to j for a typical configura- 
tion with /;,; - 3.8 m, I$= .2 m, ‘I*-- -.7 m, Et)’ 15 GeV and 

Table I 

Values of Ants for the power series expansions of the 
normalized field errors with x0 = 8.0 cm and N = 6. 

n Design A Design B Design C 

1 3..5xlo-5 7.9x1o-5 1.8 x 1o-4 

2 5.8 x 1o-5 -9.3x 1o-4 -1.8X10 -3 

3 -4.3x 10 -4 4.3x 10 -3 6.5 x 1o-3 

4 -4.1x 1o-3 -6.4x10-3 -7.4x10 
-3 

5 5.9x10 -4 -7.4x 10-4 -l.4u1o-3 

6 1.7x 10-3 3.6xlo-3 3.6 x 10-3 
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FIG. 2--A map of constant -L/, contours due to 
field errors in 42 (design B) for a t)qG- 
cal machine configuration. 

v.-v -13 75 I. . Figures 2 and 3 give a plot of the constant 
c&to& of &x for errors in Q2 and Q3, respectivelv. 
Figures 4 and 3 give a plot of the constant contour o> 4; 
for errors in Q2 and (23, rc~spectively. The aperture o?‘the 
machine is indicated in these figures by a dnsh~~cl iin,, 
Particles with values of 6 and i above this line arc lost in 
the machine. Similar results hiive been i’aunti for the other 
designs and for other configurations. 
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FIG. 3--A map of constant AU, contours due to 
field errors in Q3 (design B) for a typi- 
cal machine configuration. 
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FIG. -I--A map of constant Avy contours due to 
field errors in 42 (design R) for a typi- 
cal machine configuration. 

A measure of the effects on ihr I~etLitron frcquenc); 
shifts may be indicated by the values of Au for particlcs on 
the dashed line. As an example,the range of values of AV 
for the configuration under consideration are shown in 
Table II for the three designs. 

IV. Discussion 

It is important to note that the values ot AU obtained by 
this method is the sum of the &J values for all the multipole 
terms in the series expansion of the field errors. Compari- 
son of the &I, values of a given multipole term for the 
dlfferent designs does not give any indication of the relative 
quality of the designs. For example, from Table I it can be 
seen that most of the multipole coefficients for design B are 
gTcatcr in magnitude than those for design A. IIo~vever, it 
can be seen from Table II that design 13 is superior to 
design A. This is resulted from the fact that there is more 
c~;tncc~ll:it1on of the contributions from the dit’t’eront multipolc 
terms in design Ii than in &sign 21. 

5 IO 

\ 
2 

x 
2 t- 
2 

%i 

:: 
57 

LIZ 
CL 

8 
2 

z 

0 
0 

ENERGY :E”IATION (S/a,) 
IO 

,.,,., 

FIG. 5--A map of constant &y .contours due to 
field errors in Q3 (design B) for a typi- 
cal machine configuration. 

Table II 

Range of values of aV for particles whose maximum radial 
position is equal to the radial machine aperture. 

Dealgn A ce6ugl B Design c 

Mag"d Q2 YJ Q2 Y3 Q2 63 

- .6rh? _ .4r lo? .,,0r,,)-3 . r*d .L~d -l.5.1*-5 

bx j .,.,“d /e:.,,:“,o-5 / ,.,:“,,-5 1 .,.L5 / ?;:d j ~3.0:l,i-~ 
, / 

.:i.10-2 .4*10-4 - .i ‘1o-4 1.4 s m-4 -4.02 I” -4 

by I iu ; b to to to 3 if 

l.,l~lo-i J .1!l-4 .iAlcl-2 / 3.2.1o-4 -1.0 d AIL -4 

I 
idlila 

2y comparing Figs. 3 and 4 it can be seen that for a 
given design the constant contour map of Au values can be 
different in character. For post cases the value of Av in- 
creases as the value of 6 or xp increases, However, for 
some cases the change in Av is not monotonic (see Fig. .4). 
For such cases maximum values of & may not occur at the 
aperture limitanda detailed study of the Au contour is necessary. 

In general, in order to evaluate a given magnet design 
first the aperture of the machine must be defined. The 
$perture limit may not appear as the same function of 6 and 
x6 since the particles may be lost at different locations 
depending upon the machine configuration. The values of Au 
are calculated for all the desired machine configurations and 
the maximum values of 4, within the aperture limit are 
noted for each configuration. If the values of Arm,, are less 
than the tolerable value of AU then the design is acceptable. 
The tolerance for the value of AU,,,, is dependent upon the 
width of the machine resonances near the operating betatron 
frequencies. For a storage ring the aperture of the machine 
may be determined by the injection conditions, the allowed 
closed orbit deviations and the desired beam life time. 

V. Reterenccs 

1. E. 1). Cournnt and II. S. Synder. Ann. Phys. (X. Y. j 2. 
l(1958). 

2. Rohert Avery and Klaus IIalhack, Lawrc:nt:e Rcrl<f~lts> 
Taboratory, private comlnunic:ltiotl. 

:i. A. S. King, I\I. J. Lw xncl 15’. W. L,ee, :1UGIC--r\ 
Compukr Code Ior Design Studies of Insertions and 
Storage Rings, Stanford I.incar Accelerator Center 
report, to be published. 

1880 


