IEEE Transactions on Nuclear Science, Vol.NS-22, No.3, June 1975

## BEAM DYNAMICS EXPERIMENTS IN THE PS BOOSTER

## J. Gareyte, L. Magnani, F. Pedersen, F. Sacherer and K. Schind1

CERN, Geneva, Switzerland

## Sumary

The main problems encountered on the way to $10^{13} \mathrm{ppp}$ have been emittance blow-up and coherent instabilities. The observations and counter measures are described in the text.

## Introduction

As described previously ${ }^{1}$, the Booster is a slow cycling accelerator composed of four separate, superposed rings, each with $1 / 4$ the PS circumference. protons from the 50 MeV linac are multiturn injected into each of the four rings, accelerated in five bunches per ring to 800 MeV , and then transferred sequentially into the 20 waiting PS buckets for further acceleration. The space-charge 1 init in the PS should therefore be raised by the factor 8.3 due to the change in $B Y^{2}$, assuming that the normalized emittances are unchanged. With the same emittances, the space-charge limit at 50 MeV in the Booster should be about six times larger than the observed $2 \times 10^{12} \mathrm{ppp}$ limit at 50 MeV in the PS: a factor 4 arises because four rings are used ${ }^{2}$, and an additional 1.5 because the Booster bunches are $50 \%$ longer than the PS bunches.

After considerable effort spread over a two year period, the best performance obtained so far is the acceleration of a beam with intensity over $10^{13} \mathrm{ppp}$ and with normalized enittances containing $95 \%$ of the particles of vertical $19 \pi$ and horizontal $44 \pi$ compared with the linac value $10 \pi \times 10^{-6} \mathrm{rad} \cdot \mathrm{m}$. The peak intensity so far accelerated is $1.4 \times 10^{13}$, but with larger emittances. On the other hand, by reducing the nunber of turns injected, a round beam is obtained with final emittances equal to the linac value and with intensity $5 \times 10^{12} \mathrm{ppp}$.

## Multiturn injection

This works as expected. With the 100 is linac pulse, up to 15 turns can be injected into each ring. The horizontal normalized enittance is 1 imited to $44 \pi$ mm•mrad (about half the acceptance) in order to fit through the extraction and transfer channe 15 and into the PS. The performance is summarized in Table 1 for two intensities (the linac pro-buncher is used only for high intensity operation).

Tible 1: PSB Miltiturn injection perfommec (l ring)

| i \% remeter |  |  |
| :---: | :---: | :---: |
|  | $\cdots{ }^{\prime}$ | 4. |
|  | $-11$. | -1-1.2 |
| $\therefore$ anter ot taras | 17 | 1.1 |
|  | 4.s. 14: |  |
| Protems ingucter | $\therefore 1 \cdot 30^{3}$ | $\therefore \therefore \quad 311^{12}$ |
|  <br>  | ! $\ddagger$ | : |
|  |  |  |
| - - ¢ Brciad | $\because$ | \% |
| - - Mi¢att | 13 | $\cdots$ |

The achieved efficiencies of 35 to $40 \%$ agree reasonably well with those obtained from numerical simulation ${ }^{3}$, or from approximate formulae. ${ }^{4}$

## Adiabatic trapping

This also works very well. For low intensities, 95 to $100 \%$ of the injected particles are trapped, while for high intensilies the efficiency is between 80 and 85\%: Two debunchers in the injection line allow the linac energy spread to be varied over the range $\pm 60 \mathrm{keV}$ to $\pm 450 \mathrm{keV}$. Best results are obtained with $\pm 150 \mathrm{keV}$ : larger energy spreads exceed the bucket area, while smaller values lead to residual hunch-shape oscillations, and to severe longitudinal instabilities later in the cycle (discussed later). The RF voltage is normally programmed to rise adiabatically from its resting value of 1 kV to its final value of 12 kV in 0.5 ms , and the resulting bunch formation process is shown in Fig, 1 for $3.2 \times 10^{12}$ particles trapped per ring. At these intensities, space charge reduces the bucket area by about $20 \%$; the final bunch area after trapping is around 7.5 mrad (in units of $\Delta B \gamma \cdot \Delta \phi$ ) or 0.12 electronvolt seconds. A non-adiabatic voltage program has also been experimented with. ${ }^{5}$


Fig. $1 \sum$ signal during trapping: $0.2 \mathrm{~ms} / \mathrm{div}$.

At high intensities, a bean-loading instability occurs during the voltage rise while the voltage is still low. This is cured by momentarily increasing the dissipation in the power tube, thus lowering the $Q$ of the cavity.'

## Imittance blow-1p

This was always a serious worry, especially becaluse of the slow acceleration rate, the enittance ratio of 1 to 4 , ard the enittance limitation imposed by the sulsequent injection into the PS. Figure? shows a typical carly measurement of the emittance growth along the cycle.
liventually we realizal that most of the biow-up could be explained by repeated stophand crossing due to a combination of synchrotron motion and laslett ashift: since the $p$-depression varies along the bunch length from a maxinum at the centre to zero at vither end, a farticle's $Q$-value is molulated at twice the synchrotron frequency. The area swept out by particies in the (?-diagram iss show in lig. 3 for typical parameters. The Q-shifts are computed for a beam whose transverse cross-section has a parabolic density distribution ${ }^{8}$, and as a result, the (-shift is about 50 .


Fig. 2 Emittance growth for point near A of Fig. 3
larger than that given by Laslett's formula (which assumes a uniform density), and has an amplitude dependent octupole term which gives the diagram its width.

If stopbands fall within the shaded area, multiple crossings occur at the rate of 8 to 10 kHz early in the cycle. Typical times observed for doubling the emittance are a few ms for $2 n d$ order stopbands, 50 ms for 3 rd order stopbands, and 200 ms or more for 4 th order stopbands. Thus point A in Fig. 3 results in a continuous blow-up (the Q-sinift decreases by a factor 7 during accelerationj, while the blow-up for point B slows down after about 100 ms .


Fig. 3 Area ocoupied im Q-diagrant for I - $2.5 \times 10^{12}$ frosonsíng, banching factcr 0.5, and normalizec emittances $10 \pi$ vertical and $44 \pi$ horizontal
unfortunately widens the nearby stopbands and causes further emittance blow-up: the non-zero closed orbit in the lenses leads to a widening of the 3rd order stopbands, while small differences in strength from lense to lense widen the 4 th order stopbands. In addition, one must move away from the main diagonal since the coupling resonance $2 \mathrm{O}_{\mathrm{H}}-2 \mathrm{QV}=0$ is driven directly by the zero-harmonic octupoles. This resonance is also driven by the octupole component of the space-charge force. ${ }^{10}$

Stopband widths have been measured by using some of the compensation lenses: the $Q$-values are adjusted to overlap a given stopband, and its width is deduced from the compensation current required to prevent emittance blow-up. This is usually done on a low-energy magnetic flat-top using a beam with normal emittances but reduced intensity. The results are compared in Table 2 with the values calculated from field maps of the individual bending magnets and quadrupoles.

Table 2: Some stopband half-widths $\Delta Q_{e}$ with (2) and without (1) zero-harmonic octupoles. A stopband width $20.5 \times 10^{-4}$ gives noticeable effect over the acceleration cycle.

|  | and under$24=9$ | 3ri erder $\left.(3)_{2}=14\right)$ |  | th order$\left(20_{1}+2 Q=19\right)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | (i) | 1-' | (1) | (2) |
| Calculatal | $0.5 \times 10^{-5}$ | $1.5 \times 10^{-4}$ | $25 \cdot 10^{-4}$ | 2.3. $110^{-6}$ | $2-6 * 10^{-1}$ |
| Mrasured | $4.8 \cdot 10^{-6}$ | $1.5 \times 10^{-4}$ | $\therefore \therefore \times 10^{+4}$ | $8.0 \times 10^{-4}$ | $7.11 \times 10$ |

A more favourable working region has been used for the past year (Fig. 4): by splitting $Q_{H}$ and $Q_{y}$ by an integer, one avoids the strong 4 th order coupling resonance $2 \mathrm{O}_{\mathrm{H}}-2 \mathrm{Q}_{\mathrm{V}}=0$, and by going just above integers, one reduces the e-folding rate of transverse instabilities. This region is limited above by the strong $3 r d$ order systematic resonance $3 Q V=16$ (the periodicity of the machine is 16), and by the integer line below. The available area is too small to accomodate the beam considered in Fig. 3, and it immediately blows up, doubling the vertical emittance in a few ms, until it


Fig. 4 New working puint
fits within the area shown in Fig. 4. Then provided the working point is programmed from $C$ to D during the first 100 ms of acceleration to keep away from the strong sextupolar and weak octupolar stopbands, no further blow-up occurs. A beam with the nominal characteristics can be accelerated in this way ( $10^{13} \mathrm{ppp}$ in $19 \pi \mathrm{~mm} \cdot \mathrm{mrad}$ vertical and $44 \pi$ horizontal). Moreover, a beam with half nominal intensity can be accelerated with no blow-up at all $\left(5 \times 10^{12} \mathrm{ppp}\right.$ in $10 \pi \mathrm{~mm} \cdot \mathrm{mrad}$ vertical and horizontal). For the future, additional correcting lenses have been ordered, and should allow the working regions to be enlarged.

## Longitudinal instabilities

Centre-of-mass motion of the individual bunches develops within a few ms after trapping (Fig. 5) and grows slowly until by the end of the cycle the bunches are often moving by more than one bunch length (Fig. 6). The phase relationship between different bunches appears to be random and changes along the cycle, so this is not the usual coupled-bunch instability. The threshold depends strongly on linac energy spread, or equivalently, bunch length: one gains a factor of five in current by increasing the energy spread from $\pm 90 \mathrm{keV}$ ( 210 ns bunches) to $\pm 150 \mathrm{keV}$ ( 250 ns bunches), which is the optimum value. Still larger energy spreads reduce the trapping efficiency. Without special cures, at most $0.8 \times 10^{13}$ can be accelerated in the four rings.

Two cures have been tried. The first is to reduce the RF voltage until the bucket just fits the bunch, thus increas ing the frequency spread within the bunch. However the spread is concentrated at the bunch edge, and the centre continues to oscillate. In addition, with the reduced voltage a beam-loading instability of the Robinson type occurs, but complicated by AVC, phase and turing loops. ${ }^{1}$


Fig. 5 Centre-of-mass motion developing after trapping


Fig. 6 Bunch motion at end of cycle

The cure now used is to modulate the RF frequency with a constant signal near 4.2 kHz . During acceleration, the synchrotron frequency varies from 5 to 2 kHz , and therefore is swept through the applied 'shaking' frequency just after trapping. This rearranges the particles within the bunch, lowering the peak density by about $1 / 3$, and increasing the bunch length by a few per cent. The effect on the instability is dramatic, as the before and after traces in Fig. 7 show.


Fig. 7

The best results are obtained when the frequency crossing occurs just after trapping, and the amplitude is set near to the loss level (modulation of about $\pm 4$ RF degrees). A second crossing later in the cycle when the bucket is larger is used to remove any remaining oscillations and to increase the bunch length from 55 ns to about 70 ns , which eases transition crossing and instability problems in the PS. Phase or amplitude modulation at twice the synchrotron frequency is also effective.

With this technique of directly modifying the bunch distribution, intensities well over $10^{13} \mathrm{ppp}$ can be accelerated. However, at the highest intensities, the settings are critical and the "shaking" results in about 5 to $10 \%$ losses along the cycle. Ultimately, some combination of this technique with active feedback or voltage reduction may be the best solution.

## Discussion

Although the cause of the instability is not know, the strong dependence on bunch length and bunch shape is not surprising. The usaal stability criterion is:

$$
\begin{equation*}
S \geq F\left|\omega_{i}\right| \tag{1}
\end{equation*}
$$

where $S$ is the frequency spread within the bunch, sw is the frqquency shift due to self-forcos, and F depends on the particle distribution. For the Eonster, the dominant contribution to iu is the repulsive spacecharge force between protons, which Fas an $\mathrm{L}^{-3}$ dependence, while $S$ of $L^{2}$, and therefore one oxpects a threshold that depends on the 5 th power of bunch length. 11so, for this case where to is predominatly real, one finds from the dispersion relation that 1 is proportional to the central density of particles in the synchrotron phase plane, so bunches with lower central somity are expected to he more stable. The mapitudes are also about rignt.

The shaking technique has also been used to measure the incoherent fraquencics within the bunch. On a nagnetic flat-top, a constant applied frequency an proince a noteh in the hunch as shown in Fig. 8 . The location of this notch is applied froquency is plotted in Fig. 9 for two intensities. The frequency shift vs intonsity is atout right, but the frequencies are lower thar expected. The coherent frequency is also plotted, and one sees that it falls outside the bunch sreotrm. fins is the condation for instahility, and is cunimalent to criterion (i).


Fig. 8


Fig. 9

The absence of coupled-bunch motion during acceleration is also not surprising. The RF sweeps from 3 to 8 MHz so that a resonant element cannot maintain synchronism with the bunches for long, except near the end of the cycle where the sweep slows down. In fact, a coupled-bunch mode has been seen there. Figure 10 shows the bunch frequency spectrum from $5 f_{0}$ to $10 f_{0}$ ( $S E_{0}$ is the $R F$ frequency) during the last $1 / 3$ of the cycle, and one sees a growth at frequencies $7 f_{0}$ and 8fo. In fact, only the lower synchrotron sideband of $7 f_{0}$ and the upper of $8 f_{0}$ are growing. The sidebands expected for coupled-bunch mode $n$, with phase-shift r. $*: 22^{\circ}$ between adjacent bunches, are shown in Fig. 11; so mode $n=3$ is being excited. According to theory, a resonator must overlap one of the lower sidebands (below transition energy) to cause instability, so we expect a resonance near $2 \mathrm{f}_{0}, 7 \mathrm{~F}_{0}, 12 \mathrm{~F}_{0}$, or $17 \mathrm{I}_{0}$. At higher frequencios, the quatrupolo or breathing mode would be excited. The cause of this instability has not been found yet.


Fig. 10 Bunch Erequency spectrum


Fig. 11
We have also seen a pure sextupole mode (Fig. 12); this oscillates at three times the synchrotron frequency and has no centre-of-mass or breathing component.


Fig. 12 Sextupole mode

## References

1) C. Bovet et al., Proc. 1975 Particle Accelerator Conf., IEEE Trans. Nuclear Sci. NS-20, 221 (1973).
2) W. Hardt, Proc. Sth Int. Conf. on Iligh-Energy Accelerators (Frascati, 1965), p. 151.
3) C. Bovet et al., Proc. 8th Int. Conf. on FighEnergy Accelerators (Geneva, 1971), p. 102.
4) K. Schind1, P. van der Stok, CERN/MPS/BR Int./74-2 (1974).
5) I. Gamowski, D. Zanaschi, Bunch shape oscillation control in RF trapping, this conference.
b) G. Gelato et al., Evolution of the RF systen of the CPS booster since the beginnirg of the operation, this conference.
6) C. Bovet ct al., Proc. 8th Int. Conf. on HighEnergy tccelerators (Geneva, 1971), p. 380.
7) 1i. Schönauer, private communication.
8) J. Gareyte, F. Sacherer, Proc. gth int. Conf. on High-Energy iccelerators (Stanford, 197t), 1. $3+1$.
9) B.N. vontague, Fourth-order couping resonance excited by space-charge forces in a smohrotron, CLRV 68-38 (1968).
10) F. Podersen, bean loading efrots in the ow pe booster, this conference.
11) (F. Sacherer, Proc. 1973 Particle iccolerator Gons., IEEL Trans. Vuckar Sci. $\underset{-20}{ }, 835$ (19-3).

## khiow ledgement

Thes work woud not have heen possible without the strong support of the boostor berations and systems teans.

