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Introduction 

High-energy particle accelerators and storage 
ings require a close control of the betatron tune in 
rder to avoid beam blow-up and particle loss by non- 
inear resonances. For this reason, one needs a good 
nowledge of the tune shifts caused by space-charge 
orces. These are conventionally separated into one 
ontribution due TV the “direct” space-charge force, 
hich remains unchanged when the chamber walls are re- 
s,ved, and one due to “image” effects caused by the 
resence of surrounding walls, and which usually dcxni- 
ate at higher ener#ies. 

We further have to distinguish between the 
coherent” tune-shift, which expresses the change of 
he betatron frequency when the beam oscillates as a 
hole (not included here because of space limitations), 
nd the “incoherent” shift which changes the single 

article tune. It has become customary to express the 
mage tune shifts as the product of a factor containing 
he beam parameters, and a factor that consists essen- 
ially of the sum of geometric coefficients divided by 
he squares of appropriate chamber dimensions. 

Ordinary non-magnetic, metallic vacuum chamber 
rails cause only an electric image force for coasting 
earns, while a magnetic image is formed by the pole- 
‘ieces 3i the mngnets .;urrr~udin~; the chambrr. ?or 

‘unched be;mv+, however, also the magnetic image is 
armed by rhe chamber wslls, and a strong cancellation 
f the image forces results. 

These “image-coefficients” are proportional to de- 
ivntives of the forces acting on the beam. In general, 
e need to know them in two orthogonal directions - 
sunlly taken as horizontal and vertical. Outside the 
earn proper, the incoherent inage coefficients obey 
aplace’s equztlon, and hence are of equal magnitude 
ut Jpposite sign. This does not hold for the coherent 
mnge coefficients, however, which contain the derivn- 
ive oi the field with respect to the soiirce co-ordinate, 
nd which c\ert?fr~rc ?lave to be calculated in :)otb planes. 

lnui;e Coed Fici.ents in J Circular Chamber - 

ficicre w<+ disc:uss the more ccmplicated case of 
lliptic ch,ul?bers, WC derive the relevant expressions 
OK circular #ones. ‘1 tine cli.lr:;e it , situated on the 
orizontal .-0:~s ,It x1, 113s a single image oE opposite 
hnrge at 

R’ 
>:, = - 

:: , (1.1) 

here Ii i:; the -tl;l.nbc*r rxlius. T:le potential along the 
-*is is then :i;:i’n by 

ix - x1 1 u = -,-lni-----r 
,x - x:1 (1.2) 

I 

nd the ilorizuntal co-npt>ncnt of the electric field 
ecame; 

! i:.. .u = 

-- = __ -.+- h x 2 .._ 
i 1 1 
x f - :< 1 ;< - x; 1 (1 1) 

The first term in brackets is the direct space- 

charge term, which remains unchanged whea the walls are 
removed to infinity. From the second term, we obtain 
the incoherent image coefficients 

3 
7 co R- 2E, 

IM 

- E!“(X,XI) = ___ - 
,I nx 

(1.5) 

or, using the normalized variables 

x7 

‘I1 IR (1.5) 

qhhrnl) = - E:-@(ri,l?l) = 
‘il? 

2t1 - vl1F (1.6) 

Fig. 1 - Incoherent image coefficient of thin beams 
on the major axis of elliptical vacuum 
chambers, for varying aspect ratios w/h, as 
function of the distance from the centre x/h. 

The image coefficients at the beam location are 
found for n = n1. They are shown in Fig. 1, together 
with the coefficients of elliptic chambers. Tt can Ix? 
seen that ‘1 = 0 at the centre of a circular chamber, 
but reaches values above the coefficient of the 
parallel-plate geometry ( T’/48) nlready half way to tile 
‘JR 11 . However, :is their si;gs are opp:site, the clin- 
tributions due to circular and due to elliptic chambers 
(or flat pole pieces) tend to cancel to some de,<ree. 
This will no longer :x true, however, for supercon- 
durting machines with purely circular chambers :and iron 
surfnces. 

The image coefficient of a heam of finite hnlf- 
width a - hilt negligible hcifiht - ccntred at x,: ccln be 
found from the intc>:ral 

rl(:i;x,. ,a) = - J 
23 

c: (x,x;)dx: (1.7) 
x, -:a 

for ?~e:ins of unif.3r:ii llensity. ‘1‘1~~~ intc;*:r.ll is readily 
cv.lluatcd and yields (wit11 i = ,1/R) (1.8) 
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qhh;llo,a) = -L 
1 1 U-V 

27-F 
1+-+-l*- 

.2-G- ” u+v 1 (1.9) 

where u = 1 - Tlqo 
(1.10) 

v = aq 
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Fig. 2 - Incoherent image coefficients of a flat 
beam of various widths a = a/R in a cir- 
cular chamber of radius R, as function 
of position n = x/R. The hatched area 
gives the limits of the beam. 

a) centred beam, b) off-centred beam. 

Figs. 2a and 2b show clv for beams of different widths 
across the whole vacuum chamber, for centred and 
slightly off-centred beams. Even for centred beams, 
~1 1s now unequal zero everywhere, but it remains 
small even for beams filling half the chamber. For 
off-centred beams, however, cl can become quite large 
at the beam-edge closest to the wall, and also the 
tune spread may be increased considerably. 

Image Coefficients in Elliptical Chambers 

The case of a line charge located at the centre o 
an elliptical vacuum chamber has been solved by con- 
formal mapping techniques in the classical paper by 
Laslett l. These techniques can still be used for 
beams situated on the major axis of the ellipse, but 
we now have to distinguish between beams inside, resp. 
outside the focal points. For most elliptical 
chambers, however, the focal points are so close to 
the walls that we can ignore the latter case here. 

As shown in ref. 2), the potential of a line- 
charge X located at xl < e in an ellipse with half- 
height h, half-width w, and focal distance e = Jw2-h 
can be obtained by the three step transformations 

z' = arccos a 

z" 
2Kz' 

= sn(- 
77 , k) 

z"' = &v ;esp. &2 - l/,$ 

(2. 

where the first transformation maps the ellipse onto a 
rectangle, the second one onto a half plane with a gap 
in the equipotential on the horizontal axis, and the 
third one closes the gap for auxiliary charges of equal 
resp. opposite sign at - xl. Averaging over the 
two cases then yields 

U = & In 1:: I tdzi (2.2 

where cn and dn are Jacobian elliptic functions of ar- 
gument u (resp. u1 for subscript 1) with 

2K 

"(1) = -T arccoS 
x(1) 

e 
(2.3 

K = K(k) is the complete elliptic integral of the 
first kind, and the modulus k is determined by the 
transcendental equation 

K' -= 
K 

i Artanh 2 (2.4 

K' = K(k') is the elliptic integral of the cample- 
mentary modulus k' = :1-kT. It is more convenient, 
however, to introduce the "nome" q defined by 

q = exp(- 7 K'/K) (2.5 

which then is given in terms of the ellipse dimensions 
by the algebraic equation 

w-h 
q=- w+h 

(2.6: 

Also computer programs for elliptic functions are 
usually expressed in terms of the nome, which makes 
numerical evaluation much easier. 

From the potential, we obtain the electric field 
by differentiation. Subtraction of the direct space 
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charge terms yields the image field component 

E IM 
x 2K cndnl 1 

=- - -- 
x 271 co 1 II w sn - Sill x - Xl 1 (2.7) 

where W 
(1) 

= 4‘2 - X($ (2.8) 

The image coefficients are obtained from the derivates 
of the electric field, multiplied by the factor 
r co h2/X, and we get for E~~(x,x~) = - Elh(X,X1) = 

2Kx cndn I 1 

1(sn-sn1)2 W sn-snl 
2 (x-x1) 1 (2.9) 

where the arguments of the elliptic functions have 
been changed to 

2K X(1) u(I) = 7 arcsin 7 

In the limit x -f x1, the expression becomes indeter- 
minate, and we use series development about the beam 
position to get for ~lv(xl,xl) = - slh(xl,xl) = 

h2 2K 
----T* 12x1 

N ) 

2 
6k12 K snl XI 4e2 + 5x12 

-- 
T cnldnI II cnldnl WI 2w,2 

I 

(2.11) 

where 

A = (2 - k2) - i(l + k*)’ Sll: 2 - k2(l - 2k2) sn14 (2.12) 

For XI = 0, we obtain the image coefficient at the 
centre of the ellipse 

2 

(2 - k2) - 1 
I 

(2.13) 

in agreement with ref. 1). The incoherent image co- 
efficients are shown as function of xl/h in Fig. 1 for 
ellipses of various aspect ratios w/h. For beams of 
finite width, the image coefficients are again obtained 
from eq. (1.7). A computer program has been written to 
evaluate the integral, and some results are shown in 
Figs. 3a and 3bj for centred and slightly off-centred 
beams for ellipses of an aspect ratio of 3, which 
corresponds to the ISR vacuum chamber inside nagnets. 

Image Coefficients in Parallel Plate Geometry 

This geometry is mainly of interest for the mag- 
netic images of flat pole pieces. Using image currents 
of equal sign - rather than charges of opposite sign - 
and adding the return current at infinity, conformal 
mapping yields 3 for a beam situated at XI in the 
median plane 

E2(X,Xl) = .$ --.-A--- 

[ 

.2 
(3.1) 

(x-1) 2 4g2 Sinh 2 -+x-x1) 
2g 3 

where 2g is the pole-piece separation. For a flat beam 
the integral (1.7) yields 

7 Sinh 7: CI 
ci(Ti;r*,a) ‘5 = -- 

(n-n,) 2 - a2 8a Sinh2 :(?-no) - Sinh2 7ia 
2 2 

(3.2) 

This function can be used in the evaluation of the 
total Q-shift in the ISR. 

,d -5 ‘1, 

-._,l 
5 

FIG. 3b 

Fig. 3 - Incoherent image coefficients of flat 
beams of various widths a = a/R in an 
elliptical chamber of aspect ratio w/h = 3, 
as function of position n = x/R. The 
hatched area gives the limits of the beam. 

a) centred beam, b) off-centred beam. 
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Direct Space-Charge Coefficients 

Analoguous to the image coefficients, we can de- 
fine the coefficients cgv and cOh due to the direct 
space-charge force. Since electric and magnetic forces 
counteract each other, these terms will be multiplied 
by l/y2 unless a finite neturalization n destroys the 
balance. 

90~ we can no longer ignore the vertical extent 
of the beam, as the coefficients would tend to infinity 
for vanishing beam dimensions. For a Gaussian beam of 
standard deviations a and b the horizontal and vertical 
directions, the potential has been given in integral 
form by Houssais 4 

x2 b2 
- 1 - exp(- - - -;-) 

a2+ t 

4 

bL+t dt 

(a2+t) (b2+t) 
4 

(4.1) 

This expression must be differentiated twice under the 
integral to get the field derivatives, and then the 
integrals can be evaluated 5 to yield for y = 0 

b* b -: 

X2 

co 
h 

(x) = ,: x e 

XL -- 
a2 (4.2) 

- “h 

/ 
where E = vb2 - a2. At the beam centre, we get simply 

b =___ 
atb (4.3) 

in agreement with earlier calculations 6 after division 
by b’, which factor has been introduced to make the 
coefficients dimensionless. 

We can integrate this expression over ;i stack in 
closed form to get 

;. ,_ 11 = !z 1,’ 
4 ac 

(.~~) 2 
e 

( - 
erf ; y - erf z.? 

E ) 

(x-q 2 rI. 1 2 
( 

erf b x-2 erf c 5 .: r 
)1 

(4.1) 

‘,,, ti-? b 
,I =-‘;i,+b; 

erf e _ ‘rr E , 
,c 

: = “‘b.! - ,+> 

where :ic h,lvc r?plJced a by L - the tail Il;ilf-width - 
and used a for the stack half-width as before. Inside 
the IX’XI, Poisson’s cquaticn nust h::ld, and thcJ den- 
sity profile over the stackzis given by 4 times the 
sum of t:lf two coefficients. ,’ 11 

At the beam centre, we now get 

a2 

(4.5) 

Ecv(0) = - cob + y erf .+ 
s 

In the limit of vanishing tails - corresponding to 
a horizontally uniform beam - these expressions become 

(4.63 

where w(x) is the complex error function. 
edge, cob 

At the beam 
changes suddenly to a negative value, while 

CO v is continuous 

cob(2) = ill?!? [w(i a) t- l] 
4 a b 

s,“(a) = dZL [I - w(i 2!)] 
4 a b 

(4.7) 

These coefficients are shown in Fig. 4 for stacks of 
various tail-widths. 

Fig. 4 - Direct space-charge coefficient for a 
stacked beam of heii.;ht-to-width ratio 
b/a = 5/12, and various flank-widths b/a. 



Incoherent Q-Shift of Stacked Beam 

The geometric coefficients calculated in the pre- 
vious sections can now be used to calculate the Q-shifts 
of stacked beams in storage rings. For a machine con- 

sisting partially of circular, and partially of ellip- 

tic vacuum chamber as the ISR, the incoherent Q-shifts 

in the two planes are given by LtQ = 

circ 
El 

ell 
E2 c2 

PP 
EO 

Tr B2 Y 
Cl -+c*- 

R2 h2 
+ c3 e2 -+ - 

g2 
.<2 b2 

with N - total number of particles 

r0 - classical proton radius 

; - average beta function 

3,~ - beam velocity/energy 

7 - neutralization 

ci - circumference factors 

7. -I. - geometric coefficients 

This still neglects the influence of bellows, 
pick-up and clearing electrodes, resonant tanks, and 
other cross-section variations. Nevertheless, agree- 
ment with experimentally measured values is quite satis- 
factory, as can be seen in Fig. 5, which shows the Q- 
shifts in the centre of five 3 A sub-stacks of 6 mm 
half-width, with centres moving from + 39 mm to - 9 mm 
corresponding to stacking on the 8C working line in 
the ISR. 

Conclusions 

The incoherent image coefficients of thin beams in 
elliptic chambers have been expressed in closed form, 
and are summarized in two graphs, including the 
limiting cases of circular and parallel plate geomi- 
tries. Several cases of beams of finite widths are 
also shown graphically, as well as the contribution due 
to direct space-charge. 

For circular chambers, which are usually proposed 
for future superconducting machines, it can be seen 
that the image coefficients can become quite large for 
excentric beams, and should not be neglected. As an 
example, the geometric coefficients are used to cal- 
culate the tune shifts of substacks on a dynamically 
compensated working-line in the ISR, and show better 
agreement wirh experiment than had been expected for 
the idealized geometry. 
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