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Introduction 

In intersecting proton storage rings such as the 
existing ISR and the proposed ISABELLE,’ the beans are 
stacked in momentum space and occupy a momentum bite 
of l-3%. The chromaticity of the rings reflects a de- 
pendence of the betatron tune as well as the structure 
function,2 p, on momentum. Correction of these effects 
can at least in part be accomplished by a distribution 
of sextupole magnets. The momentum spread within which 
the variations of the tune and the B-function with 
momentum can be eliminated or tolerated is the momentum 
aperture. 

When the rings consist of a series of regular 
cells, the horizontal dispersion function is non-zero 
everywhere and it is possible to correct for the effects 
of chromaticity by sextupoles placed at or near each 
focusing element. This is the case in the ISR where 
the momentum aperture in fact exceeds the available 
physical aperture. In a high performance storage ring 
such as ISABELLE, it is required for the interaction 
regions to be contained in long straight sections, i.e. 
experimental insertions. These are matched to the reg- 
ular lattice with respect to b and dispersion functions. 
A great deal of effort has in the past been devoted to 
designing such matched insertions to fulfill experimen- 
tal requirements.l Recently they have been reexamined 
from the point of view of available momentum aperture 
and they have been found to be not entirely satisfac- 
tory. The presence of large numbers of non-locally- 
correcfible focusing elements in these rather complex 
straight sections give rise to a prohibitively small 
momentum aperture. 

In this paper, a much simpler type of experimental 
insertion will be considered. Both the bending nec- 
essary to accomplish the beam crossings and the disper- 
sion function matching will be done in the regular 
lattice by a modification of the bending in the cells 
adjacent to the straight sections. The insertion it- 
self will contain only one focusing unit on each side 
of the crossing point. Results of numerical calcula- 
tions on the off-momentum effects for this type of 
insertion will be presented. It will be shown that a 
reasonably large momentum aperture can be obtained over 
a certain range of values of the parameters characteri- 
zing the insertion and ultimately determining the 
storage ring performance. The consequences of the 
added chromaticity correcting sextupoles with respect 
to both limitations on the betatron aperture and re- 
strictions on tune will also be given. 

2. General Considerations 

The introduction into a cell-lattice structure of 
long straight insertions means (1) a low periodicity to 
the structure function; specifically, the periodicity 
is the number of identical insertions, and (2) a strong- 
er sensitivity of the structure function to momentum, 
which we consider explicitly as a function of p as well 
as the physical azimuth, 8, measured with respect to a 
reference point on the equilibrium orbit. Since the 
tune for a period is related to S by b=(R/2n) ‘2rr de/p,, 
where R is the average radius for the period, U?hen it 
is also momentum dependent. 
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To the extent that the momentum dependence of \I is 
linear, this chromatic effect can be compensated by a 
0th azimuthal harmonic sextupole distribution. Since 
an off momentum particle has a displaced equilibrium 
orbit because of the presence of radial dispersion, a 
sextupole distribution inserted at locations where such 
a dispersion exists, simulates a quadrupole with effec- 
tive gradient, 

G = S xp(hp/p) , (2.1) 

where S is the sextupole strength, x p ie the local dis- 
persion and &p/p is the momentum dev ation from the 
central or “matched” momentum. There are three reasons 
why local chromatic correction suggested by (2.1) is not 
an appropriate procedure. First, it is desirable from 
the point of view of storage ring performance to have 

= 0 in the straight sections near the beam collision 
‘&gion. Second, since the chromatic effect is large in 
the insertions, large local sextupole components are 
required. These not only excite third integer reso- 
nances, but can induce higher order effects, such as 
4th order resonances. These latter are excited, albeit 
more weakly, even by a more distributed sextupole dis- 
tribution than would result from local correction. And 
third, effects due to higher order in Ap/p are not 
corrected by this procedure. It appears that trying to 
maintain a reasonable dispersion function in the long 
straight sections with quadrupoles only, coupled with 
the introduction of large sextupole components, tends 
to strengthen these higher order terms. 

We will therefore consider a lattice structure in 
which the dispersion function is brought to aero in the 
insertions by appropriate removal of bending in two 
contiguous normal cells. The chromaticity is corrected 
with sextupoles placed in some of the cells. The in- 
sertion S-functions are matched to the cells at some 
central momentum. We will consider in Section 3 a set 
of insertions which can essentially be characterized by 
two parameters, e, the distance from the crossing point 
to the first focusing element, and 3*, the vallue of @ 
at the crossing point. We will show that to first order 
in Ap/p, and for low values of E*, the momentum discor- 
tion of the P-function has a roughly linear dependence 
on the ratio, t/b*. For sufficiently small values of 
this ratio, the sextupoles correct the working line 
slope properly, producing only a snail quadratic depen- 
dence of v on momentum. However, as t/g* increases, 
effects nonlinear in momentum become more evident, 
appearing as curvatures in plots relating both p and v 
to momentum. These are studied numerically using the 
SYNCH computer program, with insertion matching at the 
central momentum done with the TRANSPORT program. 

The S-function distortion with momentum, although 
generally considered as a l/2 integer structure reso- 
nance effect, is, strictly speaking, not a resonance 
effect at all. It is true that as the period tune 
approaches a l/2 integer value, the period becomes 
unstable, with 3 rising towards infinity. However, we 
are concerned with ?-function distortions occurring 
when the tune is l/4-integer, the maximum distance from 
the two closest resonant values. In fact, even at 
period tunes of l/4-integer, lattices with lcw ,; inser- 
tions tend to have significant R-variations with p. The 
choice of period tune is thus constrained to be in the 
vicinity of l/4-integer. 
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The p-function variation with p is not the only 
factor limiting the choice of period tune. Because of 
the long field-free regions, we might anticipate that 
required nonlinear field distributions or systematic 
nonlinear field errors will excite nonlinear structure 
resonances, further limiting the period tune choice. 
An example already alluded to is the necessary sextu- 
pole distribution for chromaticity correction. This 
gives rise to l/3 integer structure resonances, and 
because of its substantial magnitude, also excites a 
l/4-integer resonance (which is 2nd order in the sextu- 
pole strength). These sextupole structure resonances 
will be discussed in section 4. Although systematic 
field errors in the magnets will contribute to nonlinear 
structure resonances. they can in principle be corrected 
by special correcting coiis within-each magnet. On the 
other hand, certain nonlinear fields are intrinsic to 
the design of the storage rings. The sextupole field 
necessary to correct for chromaticity is one of them. 
In addition, an octupole field distribution may be 
required to compensate for working line curvature, 3,4 

arising for example, from the beam space-charge or 
from the off-momentum effect mentioned above. This 

will give rise to a l/4-integer structure resonance, 
one which is 1st order in the strength of the octupole 
excitation field. Another nonlinear force present is 
the beam-beam force. This highly nonlinear force ex- 
cites all even ordered structure resonances, in partic- 
ular the 4th, 6th, 8th and 10th. The limitations on 
period tune are thus severe: we must be near l/4 in- 
teger but not too near; we must be far from l/3 in- 
teger, but not near l/6 or l/5. We are thus left with 
a small region between l/4 and l/5, say 0.78. It is 
interesting to observe that the classic argument for 
high periodicity is especially applicable in this 
situation: We would like to have a certain freedom 
to choose a machine tune to avoid constructional-error- 
induced-resonances and to allow for a sufficient tune 
spread to provide Landau damping for transverse coher- 
ent instabilities.4 However, we would also like to be 
able to accomplish this essentially independent of the 
period tune. Of course, this implies a high periodi- 
city. For our purposes here, we will assume that the 
periodicity is identical to the number of experimental 
insertions. The specific number is irrelevant since 
we are concerned only with structure effects. We 
ignore at this time the possibility of a more complex 
arrangement with more than one insertion per period. 

where LI 
iod uI, !s 

= 27~ v is the phase advance for the total per- 
the pfiriod tune, and for a discrete gradient 

distribution, ~2, a complex function, is given by 
:- 

In general, the physical aperture determines the 
maximum allowable momentum spread in a stack. The ISR, 
for example, has a physical aperture corresponding to 
a momentum aperture on the order of f 2%. For machines 
operating at a higher energy than the ISR, it might be 
thought that for a given stack current, such machines 
would operate with momentum apertures appreciably 
smaller than the maximum determined by the physical 
aperture, this following from the adiabatic damping 
of ApIp. (It is Op that is invariant for coasting 
beams.) A small beam momentum spread is of course a 
very desirable condition because of the distortion of 
the structure function for off-momentum orbits. How- 
ever, the smaller momentum aperture conclusion is not 
an obvious one. There is in fact a required minimum 
momentum spread. The criterion which determines this 
required minimum spread is related to the maximum 
allowable impedance for longitudinal stability of a 
coasting beam.= (We assume that there is no limitation 
in our choice of density-i-e. current per unit momentum 
bite-which implies a measure of control over the den- 
sity at the source as well as control over potential 
dilution during the complex process of getting the 
beam to the storage ring and then stacked.) For 
machines with equal current and similar momentum dis- 
tributions, the impedance maximum, IZl,,,sx m p/Ezr, 
where Etr is the transition energy. Since the transi- 
tion energy is to a large extent determined by the 

circumference, we have roughly, (2(,x 0~ p/C’. This 
means that a higher energy translates into a smaller 
required momentum spread and a larger circumference 
translates into a larger required momentum spread. (In 
the latter case, it is probably more difficult to con- 
trol the impedance sources around the larger circum- 
ference, and so the momentum spread required would go 
up even further.) For any given machine, the minimum 
momentum spread required can be found from the full 
expression for the limiting impedance,5 

I:1 ma* = q ($J Pg, ’ (2.2) 

where I is the average current, n is the azimuthal har- 
monic number, i?g/p is the full width at half-height of 
the momentum distribution, (3p/pit is the full width of 
the distribution tail, 7 = l/v2 - l/$, y is the energy 
and ytr is the transition enerE$, the last two quan- 
tities having units of proton mass. 

3. Momentum Dependence of the Structure Function and 
Tune-General Formulation of 1st Order @ Distortion 

An expansion of the 8 function in powers of momen- 
tum yields” for the fractional p change, to 1st order 
in the momentum error, Ap/p, 

4!pl= 2 121 
2 sin PL (3 

cos (2$ + E -pL) ) (3.1) 

32 
= lJ21ei6 = t 8, qt ei2 te . 

e 
(3.2) 

Here, 8 is the value of R at the eth quadrupole, qt is 
the int%grated gradient (qa = .(‘Gds/p), 1,. = R,[dt3/6 1s 
the phase to the 4th quadrupole element from the first 
quadrupole, implying that Jr1 = 0, and Q is the phase 
from a reference point to the first quadrupole. Note 
that all the azimuthal dependence of the J2 function is 
implicit in the quadrupole counting. Thus, to find .J2 
as a function of azimuth, we must keep reordering 
quadrupoles as we move across them, thus changing the 
relative phases and thus the value of J2. 

Low $ Insertion 

Consider a series of low p insertions matched to 
the lattice cells as shown in Fig. 1. Note that only 
the vertical p is focused to a low B value to avoid 
excessive p-values in the focusing triplet. This pro- 
cedure is quite acceptable, since with horizontal beam 
crossing at angles of interest, we can presume the 
attainable luminosity to be independent of horizontal 
B. Because the contribution from cell quadrupoles from 
cell to cell tend to cancel, the total cell contribution 
to the B-distortion will be small compared to the con- 
tribution from the insertion quadrupoles. Exact can- 
cellation results for the case of an even number of cells 
with n/2 phase advance. Both these conclusions remain 
valid for the chromaticity correction sextupoles when 
they are properly located in the cells. We thus calcu- 
late the effect of a low-p insertion alone. Of course 
higher order effects will be complicated by the inter- 
ference of the cell contribution with the insertion con- 
tribution. 

If the B function goes to a low value, it will rise 
rapidly. As it reaches the focusing system, we can 
assume it to be sufficiently large that there is little 
phase advance across the triplet. The triplet can thcre- 
fore be considered as a simple focusing lens. its re- 
quired strength can be estimated tram the needed change 
in slope of the B function to match it to the cells. 
It can be deduced that the change in slope leads to an 
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effective triplet strength, given approximately by 

(64) effective, triplet = (qP*) iL + (e”/B,,,L)f], (3.3) 

where 3 is the minimum B for the cell. Therefore, 
since t Fi $‘bhase advance between the two focusing systems 
across the Low B region must be close to TT, then their 
contributions to the 1st order B-distortion add. We 
thus obtain J2 = * (Bq)effectivey which leads to the 
B-distortion outside the double-triplet-region, 
*/P = (Bq)effegtive (Ap/p) cos (2$-uL)/sin +I, , where 
jr is the phase rom the observation point to the first 
triplet, and IL is the period phase advance. For a 
l/4-integer period tune, the distortion effect to 1st 
order is zero between the two triplets, since J2 = 0 in 
this region. Outside this region, and in particular, 
in the normal cells, the distortion modulates at a 
frequency of twice the betatron tune, with a maximum 
given by 

1 W-PI,, = (T//S*) 1-l + (R*/Rcell)41 (Ap/p)/sin uL 

(3.4) 

We show in Fig. 2 the function lAB/@\,,x versus 
bp/p for the various insertions seen in Fig. 1, defined 
by various values for L and S*. Along with these theo- 
retical straight lines, we show the results of a com- 
puter analysis. The fit is good for positive Ap/p, but 
the effect becomes stronger than 1st order rapidly at 
negative Ap/p . This asymmetry results from the fact 
that a first order effect for negative &p/p is to in- 
crease the effective focusing of the triplet, which be- 
cause of the phase relationships between various ele- 
ments, does not occur for positive ApIp. Since the dom- 
inant 1st order parameter is just the effective focusing 
strength of the triplet, it is not surprising that high- 
er order effects occur at a lower magnitude of &p/p when 
Ap/p is negative. In Fig. 3 we show the chromaticity 
corrected u vs p curves for the 4 cases. Shown in the 
accompanying table are the values for the central tune 
of the period and the uncorrected chromaticity in each 
case. The influence of higher orders in Cp/p is clearly 
evident at apip = i 0.5%. The results suggest the po- 
tential need for octupoles or higher order terms to com- 
pensate for this curvature. This is especially impor- 
tant in order to avoid a “brick wall” effect due to the 
transverse resistive wall instability.3 

4. Nonlinear Structure Resonances 

The sextupoles needed to compensate the chromati- 
city of the linear lattice can induce structure reson- 
ances if the phase advance in a period is a l/3 integer 
multiple of 2n. However, in addition to these well 
known l/3-integer sextupole resonances, if 2nd order 
terms in the sextupole field strength are taken into 
account, it turns out that l/4-integer structure reson- 
ances can also be excited by a sextupole field distribu- 
tion. We can explain this latter effect qualitatively 
by considering the one-dimensional equation of motion, 
x” + K(8)x + S(t3)x” = 0, where K(B) is the gradient 
forcing function for the lattice and S(e) is the azimu- 
thal sextupole distribution function. Because of the 
nonlinearity, the betatron motion, in terms of the dis- 
placement variable x, will contain the frequencies 2u, 
3Tj . . . as well as ‘;. Since S(e) contains all integral 
Foirier components, the term Sx2 contains, among others, 
terms of frequency :k-c-(fv)] = k-3v, having strength 
proportional to the (2U) component in x(e).- Now when 
this frequency equals ‘3, i.e. k = 4.3, then resonance 
results. Note that the effect is at least 2nd order in 
the sextupole strength since the (2~) component of x(8) 
is proportional to at least one power of the sextupole 
strength. 

The strength of the sextupoles is fixed by the 

1 

chromaticity of the Linear Lattice. If the chromaticity 
= p;iu/ap, then the requirements for the sextupole 

ttrzngth function is given by, &= (l/Zn)r S B x ds ; 
z$=- (1/2n) [ s B x ds, where x is the ‘horiz& al dis- e 
pxrsion function gn8 the integral is to be taken along 
the equilibrium orbit around the circumference. Thus, 
for chromaticity corrected Lattices, the uncorrected 
chromaticity is in fact a measure of the strength of 
the sextupole distribution. The resonances excited by 
this sextupole distribution, depending on various Fourier 
components of S(e), have strengths which can be express- 
ed in terms of the amplitude at which the resonance pro- 
duces instability for a given deviation of the small 
amplitude tune from the resonant value. We therefore 
have that the resonant strength, i.e. the resonant am- 
plitude, is related to the uncorrected chromaticity. 
Exact expressions for this relationship can be derived. 
In one dimension, we can write for the 3rd order sta- 
bility limit, 

a:/$ - (x~/i3),, [(u-m/3)lel”/F3 (4.1) 

and for the 4th order, 

az/P = (xz/@),v [(u-m/3)(u-p/4)/E$a]/F, . (4.2) 

Here, 2nv is the phase advance per period, 5 is the 
chromaticity per period, aa and a4 are the resonant am- 
plitudes at an azimuth where the structure function has 
the value B, and m and p are the integers closest to 3u 
and 4u, respectively. 
factor of order unity, 

The quantity F, is a numerical 
multiplied by the ratio of the 

(3m)th harmonic of S(0) to the fundamental component of 
s(e); while, F1 has the form, F4 E If &S,S,,/St, where 
Sk is the kth harmonic of S, and the Ck’s are certain nu- 
merical coefficients depending on the detailed nature of 
the sextupole distribution. 
generally less than 1. 

We find that F3 and F4 are 
For two-dimensional motion, we 

may expect similar expressions, and for the purposes of 
order-of-magnitude estimates, we will simply use (4.1) 
and (4.2), assuming F,, Fh 5 1. Since, for reasons dis- 
cussed in Sections 2 and 3 one tends to choose u close 
to l/4 integer, the 4th order stability limit is the 
important one ~ Thus, restricting ourselves to this case, 
and taking the ISABELLE parameters x 
u(period) = 2.75 (m=8, p=lL#, 5 z 5,pa~~~~~~m~~~F~~o;+ 
we obtain a4= 0.12 (v-11/4) meters. , 
a4 = 3.2 mm. 

Numerical computations for a lattice with insertion 
IV, as previously described, demonstrate the nature of 
the l/4 integer sextupole resonance. The unstable fixed 
point agrees in order-of-magnitude with the estimate we 
have made. The phase space topology (vertical projection) 
near the 4th order fixed point is shown in Fig. 4 for 
tunes close to the l/4 integer. An example of an unstable 
trajectory coupled in the horizontal and vertical planes 
is given in Fig. 5, with the vertical and horizontal pro- 
jections shown in Figs. (5a) and (5b), respectively. 

5. Cone lusions 

We have considered some of the limitations to the 
introduction of matched insertions into a cell-lattice 
structure by studying a set of simple insertions charac- 
terized essentially by the effective strength of a fo- 
cusing triplet. Our results indicate that the maximum 
allowable strength may be much less than has previously 
been assumed. However, in at least one of our examples, 
a momentum aperture on the order ,of 2% as required for 
ISABELLE seems attainable. We also considered the in- 
pact of structure resonances on the choice of central 
tune. As well as exciting a l/3 integer structure reson- 
ance, the necessary sextupoles for chromaticity correc- 
tion also excite a l/4 integer resonance. Using inser- 
tion IV, we have shown some of the characteristics of this 
resonance; in particular, an unstable phase space topology 

even for very small vertical amplitudes. 
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4-D Fixed Points 

4. Phase space topology near 4th order fixed point. Vertical 
projection. 4th order sextupole resonance. Elliptical plots 
are non-resonant trajectories. Corresponding motion in 
[x,x’] projection remains near fixed point. The apparent 
“trajectory crossings” are not fixed points, but are arti- 
facts of the 2-dimensional projection. 

z- 
*-z.o- 

-4.o- 4 

-co- 

-11.0- 

- 3.0 -2.0 +1.0 +2IJ +3.0 

I +1.5 Ib) 0 Fixed Pts. +1.0 t Projected- 4 

+0.5- 
/ 

o- 
// / 
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