© 1975 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Nuclear Science, Vol. NS-22. No. 3. June 1975

FERMILAB ENERGY DOUBLER MAGNETS-MAGNETOSTATICS

S.C. Snowdon
Fermi National Accelerator Laboratory*
Batavia, Illinois 60510

Summary

Magnetic field computations have been performed for the three-inch circular aperture doubler magnets in the warm iron geometry. Locations for rectangular conductors along circular arcs have been found such that, in the absence of the construction errors, the sextupole and decapole terms have been removed from the dipole. For the quadrupole suitable locations for the conductors have been found that remove the duodecapole term. Field quality, longitudinally integrated fields, construction errors, forces, energy content, and eddy current heating under cycled conditions will be discussed for a 45 kG dipole and a 20 kG/inch quadrupole.

Design Considerations

The possibilities inherent in circular iron shields, elliptical iron shields, pancake coils, offset circular shell coils, and circular shell coils have been examined using complex variable methods. 1 Both the field in the transverse section and the longitudinally integrated field are calculated. For each geometry a search mode is employed to improve any one of several parameters specifying initial conductor locations. Thus, for circular shells, the radial position, azimuthal position, or azimuthal space between keystoned conductors may be adjusted. For pancake coils, the horizontal position or horizontal space between rectangular conductors may be varied. The end result of the search is a set of conductor locations that minimizes the energy content within the reference radius of all multipoles except the lowest. Although the search procedure may be incorporated into the longitudinally integrated fields, this was not done because, for relatively long magnets, the end effects are small and a few runs suffice to obtain the desired quality.

Additional calculations provide the field distribution and net flux entering the iron shield, eddy currents induced in various elements, and the electromagnetic force distribution in the conductors. Thus one may estimate field modifications induced by iron saturation, the iron cross section necessary to reduce return flux saturation, and the power loss in the bore tube liner, cryostat walls, and heat shield. From the force calculations realistic estimates are made of the banding tension necessary to restrict conductor movements and the spring constant² for the displacement of the coil package relative to the iron.

An iron shield in the shape of an upright ellipse has a reduced saturation effect on the field distribution and yields a coil

Operated by the Universities Research Association, Inc., under contract with the U.S. Energy Research and Development Administration.

arrangement for high quality fields that reflects the confocal nature of the coordinate system. Hence the usable aperture has even higher eccentricity than the shield although minimal net flux results. A horizontal aperture sufficiently small to provide an economic advantage over the circular case requires vertical injection and extraction. This imposes a considerable constraint on the elliptical shield which, therefore, was abandoned in favor of the circular shield. Having chosen a circular shield, the concentric nature of the coordinate system dictates that for high quality fields the conductor arrangement be circular. Field quality demands from orbit considerations, extraction requirements. and achievable construction tolerances set the aperture diameter at about three inches.

Considerations that lead to a choice of inner iron radius are as follow. In a typical cold iron design the shield is used directly to hold the coil package in place. Saturation effects on the magnetic field must be counterbalanced with additional correction windings. This design, however, makes maximum use of the iron in producing field. If, on the other hand, it is desired to have the dipoles and quadrupoles track with an accuracy sufficient to permit a single excitation current throughout the magnet system, then, for the coil package that yields a three inch aper ture, the inner iron radius must be about four inches. For this radius there is sufficient space between the outside of the coil package and the iron to insert a thermally insulating support structure. Thus, the iron may remain at room temperature. In this warm iron design although there is no significant saturation effect, more ampere-turns must be provided to offset the diminished utilization of the iron. We have opted for the warm iron design with the attendant possibility of simplifying the power distribution system.

For the most economical use of superconductor one may tailor the conductor size depending on its location in the magnetic field. Thus, in the dipole, two grades of multistrand cable were used. For the inner two shells a seven-strand cable of nominal size .150 in by .075 in was chosen for which the effective JB product is 80% qf short sample. In the outer two shells an ll-strand cable of nominal size .150 in by .050 in was used for which the effective JB product is 70% of short sample.

Having chosen the space allowed in the dipole for conductors, banding, cryostats, and supports, these general space allocations were incorporated into the quadrupole for maximum simplicity. These conditions and the desire to obtain the highest gradient possible in order to minimize longitudinal space allocation dictate an ungraded conductor design for the quadrupole. Thus the ll-strand conductor

was chosen which operates with a JB product at 63% of short sample.

The length of the iron shield relative to the coil ends must be chosen. Calculations using many segments of linear current elements have been made 3 and indicate that for dipoles, Field Quality ($\Delta B/B$ at 1 in Rad.) $\pm .05\%$ in the absence of the iron shield, a field enhancement of some 20% is expected in the end region. Since the field enhancement by the iron in the transverse section is 18% it is desirable to terminate the iron somewhat before the conductors are turned around. In this manner there will be no significant field enhancement in the ends. For the quadrupole, since the maximum field is much less than 45 kG, the iron shield may be carried out over the coil ends.

Finally, it is to be noted that in constructing both the dipoles and the quadrupoles the construction tolerance on the location of conductor shell radii and azimuthal position of the shell is ±.002 in.

Tables 1 - 8 are self explanatory. Table 9 refers to the longitudinally integrated fields in which circular turn-around ends are used, the turn centers being separated by the length indicated. The entries T(N), S(N), and R(N) refer to coefficients in a multipole expansion of the longitudinally integrated magnetic field. Successive terms give ΔB at the reference radius for the dipole, sextupole, decapole, etc. The contribution due to the currents with no shield is T(N), the contribution from the iron shield is S(N), and R(N) is the ratio T(N) + S(N) divided by T(1) + S(1). Table 10 is a similar calculation in which the contribution due to the ends is omitted and the length set equal to one inch. The median plane field in the transverse section is given by BT. Columns BA, BS, and BN give respectively the contribution in the absence of the shield, the contribution due to the shield, and the total field normalized to unity at the origin. The entry DELR(N) is an estimate 6 of the magnitude of the change in R(N) induced by saturation effects in the iron shield. Tables 11 - 12 provide similar information relative to the quadrupole, T(N) etc. now stepping through quadrupole, duodecapole, etc.

References

- 1. W.W. Lee and S.C. Snowdon, IEEE Trans. on Nucl. Sci., NS-20, 726 (1973)
- 2. K. Halbach, Nucl. Instr. and Methods, 78, 185 (1970)
- 3. P.J. Reardon and B.P. Strauss, Ed., Fermilab Technical Note TM-421, May 1973
- 4. P. Price and R. Yamada, Fermilab Technical Note TM-538, Nov. 23, 1974
- 5. S. Ohnuma, Fermilab Technical Notes TM-502, June 14, 1974 and TM-510, July 17, 1972
- 6. M.A. Green, Kernforschungszentrum Karlsruhe External Report 3/71-7, June 1972

Table 1. Bending Magnets Performance Parameters

Field Strength	45 kG
Effective Field Length	2 4 0 in
Good Field Width	2.0 in
Field Ouality (AB/B at 1 in Rad)	+ 0.5%

Table 2. Design Data for Bending Magnet

Conductor Current (45 kG) 23	45 A
Conductor Size (no insulation)	
Inner 2 shells	
(7-strand) .152 in by $(.075/.0)$	1676) in
· · · · · · · · · · · · · · · · · · ·	,630,111
Outer 2 shells	
(11-strand) .152 in by $(.050/.0$	(432)in
Effective Current Density	
(7-strand) 215 k	A/in²
	A/in²
,,	28
10041 1141110	
Insulation Thickness(spiral wrap) .0	004 in
Inner Bore Tube Radius (304 SS) 1.	125 in
Inner Bore Tube Wall Thickness .0)50 in
Inner Cryostat Radius(304 SS) 2.	50 in
Inner Cryostat Wall Thickness .0)18 in
Outer Cryostat Radius(304 SS) 2.	
Outer Cryostat Wall Thickness .0)18 in
Lamination Inner Radius(mild steel) 4.	00 in
Lamination Thickness .0	0625 in
Outside Dimension of Iron 16 in b	y 10 in
Total Length of Iron 23	34 in

Table 3. Stored Energy and Losses in Bending Magnet

Peak Stored Energy Inductance Repetition Period	.54 MJ .18 Hy 60 sec
Eddy Current Losses	
Bore Tube	.13 W
Conductor Matrix	1.8 W
Inner Cryostat	.22 W
Outer Cryostat	.22 W
Heat Shield (200K)	.2 W
Lamination (warm)	neg.
Hysteresis Losses	
Superconductor	3.3 W
Lamination (warm)	3.5 W

Table 4. Forces and Critical Fields in Bending Magnet

Central F	'ield		45	kG
Maximum F	ield in Co	nductor		
Inner 2	shells (7	'-strand)	47	kG
Outer 2	shells (1	.l-strand)	3.8	kG
Effecti	ve Radius	of		
Condu	ctor shell	. 3	1.8	396 in
Traction	at Effecti	ve Radius		
Angle	x-Tra	ction	y-Trac	
(Deg)	(1b/	(in ²)	(lb/i	in²)
0	6.9	9		0
40	152	?1	-117	74
50	162	2.3	-98	3 5
90		0		0
Displacem	ent Force			
(x-disp	1. = .010	in)	9.911	in/c
(y-disp	1. = .010	in)	9.911	ı/in

Table 5. Focusing Magnet Performance Parameters

Table 7. Stored Energy and Losses in Focusing Magnet

Gradient Strength Effective Gradient Length Good Field Width Gradient Quality (\Delta B / x B' at 1 in Rad.) Table 6. Design Data for	20.7 kG/in 62 in 2.0 in ±.2%	51 kJ .013 Hy 60 sec .002 W .20 W .004 W .004 W .003 W			
Focusing Magnet		Hysteresis Losses Superconductor Lamination (warm)	.56 W .25 W		
Conductor Current (20.7 kG/in) Conductor Size (no insulation) .152 in by(^ 2345 A	Table 8. Forces and Cri in Focusing Ma			
Effective Current Density Turns per Pole Insulation Thickness (spiral wrap) Inner Bore Tube Radius(304 SS) Inner Bore Tube Wall Thickness Inner Cryostat Radius(304 SS) Inner Cryostat Wall Thickness Outer Cryostat Wall Thickness Cuter Cryostat Wall Thickness Lamination Inner Radius (mild steel) Lamination Thickness Outside Dimension of Iron Total Length of Iron	51 .004 in 1.125 in .050 in 2.50 in .018 in 2.625 in .018 in 4.00 in .0625 in 10.0 in Dia.	Central Gradient Maximum Field in Superconductor Effective Radius of Superconduct Traction at Effective Radius Angle x-Traction (Deg) (lb/in²) 0 136 20 612 25 714 45 0 65 -1399 70 -1448 90 0 Displacement Force	20.7 kG/in 31 kG 1.838 in y-Traction (1b/in ²) 0 -1448 -1399 0 714 612 136		
Total Length of Iron	bb in	(x-displ. = .010 in) (y-displ. = .010 in)	2.71b/in 2.71b/in		

Table 9. INTEGRATED MULTIPOLE STRUCTURE OF C-SERIES GRADED DOUBLER DIPOLE

ROER OF HIGHEST H INNER IRO INSULATIO	ULTIPOL N RADIO	SILNI	ER	= = * '		9 C	ONDUCT		NODE RENTIA) INTERVALID	= 234! EG!= :	5.000 0		REFEREN	QF LAYERS GE RADIUS(I TAL INGREME		1.8885
LAYER	TURNS		ROEN In/In)	THE!		THETA		PAGER (IN)	RINNER (IN)	ROUTER (IN)		NGTH				
1.	29.00	215	. 5 31	.17	67	81.745	6.	00045	1.5000	1.6650	234.0	3000				
2	27.11	215	. 5 31	. 11	. 34	68.189	9.	0 6 0 2 7	1.6888	1.8450	236.0					
3	30.00		.522	.09	199	45.879	6	0 (062	1.9450	2.1100	234.2					
4	28.00	326	. 5 2 2	- 0 9	0.0	19.406	5	0 G8 52	2.1250	2.2900	240.0					
							HULTI	POLE C	GEFFICIENTS							
(N) *	8.818	E+03	-9.54	4E+00	-2.	327E+0C	-1.0	54E+01	-1.577E-0	1 5.659	E-01	-2.3	392E-01	7.678E-02	-5.920E-02	2.7818-0
(N) =	2.012			2E+00		665E-02	-1.2	69E-03	2.295E-0	6 2.709			746E-10	-6-172E-11	-6.614E-13	9.761E-1
(N) =	1.000	E+06	-2.63	3E-64	-2.	201E-04	-9.7	3 JF -04	-1. +56E-0	5 5.225	Ë-05		19E-05	7.089E-06	-5.466E-06	2.568E-0
	×	[IN]		371KG-	IN)	ÐA	(KG-IN)	as (KG-IN)		8N					
	. 0	0466	108	32.130	97	8518	.04655	2	012.08442	1 - 0	0000					
		0000		33.102		5517	35186	2	012.15134		3433					
		0000		10.312			.66038		912.35202	. 9	9999					
		0000		29.847			.16102		012.68627	. 9	9997					
		1000		29.570			41666		013,15373		9995					
		0000		29.164			. 35021		013.75393		9991					
		0360		24.103			61753		014.48624		9983					
		3000		26.424			,57499		015.34988		9970					
		0166		24.585			. 24202		016.34394		9949					
		030C		20.727			25497		17.46732		9913					
		3000		4.568			84930		18.71877		9656					
		0060		15.668			97136		20.09668		9769					
		0000		0.929			32933		21.60664		9638					
		3363		3.774			54767		23.22646		9452					
		0060		4.663			02652		24.97414		9205					
	1.5	9 9 9 9	1071	3.756	2.2	3686.	91535	21	26.84087	- 9	8925					

INNER IRON		CIND		19 CC	LGULATIONAL MOUCTOR GUI MPSONS RULI	L HODE RRENT(A) E interval(d	= = 2345. IEG) = 1.	0 0000 0000	REFEREN	OF LAYERS Ge Radius(in Tal ingrehen		1-800G -1800
INSULATION LAYER	TURNS	CURDE CURDE (KAZIN)	N THETA			RINNER [IN]	ROUTER (IN)	LENGT) (IN				
2	29.08 27.00 30.00 28.00	215.53 215.53 320.52 320.52	1 .113	68.1899 9 45.8796	.00027 00062 00052	1.5330 1.6800 1.9450 2.1250	1.6650 1.8450 2.1100 2.2900	1.0300 1.0300 1.0300 1.0300))			
T(N) =	3.664E	+31 -2	.861E-02	1.7096-09		00EFFIGIENTS 2 -4.386E-0		-03 -1	.031E-03	3.364E-û4	-2.518F-0	4 1.195E-G
S(N) = R(N) = DELR(N)=	8.336E 1.000E 7.574E	•00 2 •00 -9	.818E-02	-2.287E-04 -1.284E-06 5.917E-07	-5.220E-01 -9.639E-04 2.642E-01	9.864E-0	9 1.133E 6 5.434E 9 6.567E	-09 2. -05 -2.	939E+12 226E+65 47JE+12	-2.544E-13 7.479E-06 1.881E-13	-2.721E-1 -5.594E-0 1.037E-1	5 4.383E-1 6 2.656E-0
	.10 .20 .30 .40 .50 .60	000 000 000 000 000 000 000 000 000 00	44.9803 44.9803 44.9803 44.9803 44.9751 44.9751 44.9573 44.9573 44.9573 44.9573 44.5936 44.5936	5 36. 3 36. 3 36. 3 36. 7 36. 7 36. 7 36. 8 36. 3 36. 3 36. 3 36.	64467 64438 64352 64352 63391 63363 63237 62562 63519 53438 53451 44153 44153 43453 43453 43453 43453 43453	8.31569 8.33597 8.31682 8.31802 8.34019 6.34272 8.34580 8.35363 8.35363 8.35364 8.35364 8.35364 8.36364 8.36364 8.37578 8.38264 8.37578	. 95 . 95 . 95 . 95 . 99 . 99 . 99	0000				
MAX. FIELD			= 15.6			LITY AT BMA			FLUX IN	IRON(KG-IN)	3	67.7712
ORDER OF P HIGHEST HU INNER IRON INSULATION LAYER	OLE LTIPOLE RADIUS THICKN	090ER	= = = 4.0 =	2 CA 18 CO 1000 SI 1040	LCULATIONAL Nouctor cup		= = 2345.	1	NUMBER : REFEREN HORIZON	RUPOLE DF LAYERS DE RADIUS(IN TAL INGREMEN		1.0000 .1000
Z	17.00 14.00 11.00 9.00	320.52: 320.52: 320.52: 320.52:	1.4482	34.1045 25.6932 18.0238	06164 00138 00028	1.5000 1.6800 1.9450 2.1250	1.6650 1.8450 2.1100 2.2900	59.0000 50.0000 51.0000 62.0000				
T(N) = S(N) = R(N) =	5.590E 1.00GE	+31 5.		2.927E+00 2.541E-G7 2.288E-03	1.270E-01 -2.162E-10 9.931E-05	-5.742E-0 -5.742E-0 -1.053E-1 -4.488E-0	3	N				
	.001 .10 .23 .30 .40 .53 .60 .77 .83 .101 .101 .120 .130 .130 .130 .130 .130 .130	0 6 3 0 6 0 3 0	1279, 25811 1279, 25811 1279, 25724 1279, 25734 1279, 25344 1279, 21279, 21279, 13772 1278, 95349 1278, 54817 1277, 56136 1276, 34851 1276, 34851 1276, 34851 1276, 34851 1276, 34851 1276, 34851 1276, 34851 1265, 59915	1223. 1223. 1223. 1223. 1223. 1223. 1223. 1223. 1224. 1210. 1216. 1209. 1197.	35863 35799 35418 34270 31264 23774 5786 64657 75134 94391 43391 64796 12441 121643	55.8924 55.8925 55.8925 55.8929 55.8939 55.8939 55.8939 55.90160 55.90160 55.90160 55.90160 55.90160 55.90160 55.90160 55.90160 55.90160 55.90160	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	J000 0000 0949 991 9975 875 875 9343 9343				
	Tab	le 1:	2. INTEGN	ATED MULTI	POLE STRUCT	URE OF C-SEE	PIES UNGRA	nea an ia	Fe nuane	UPOLE		
DROER OF PI HIGHEST MUI INNER IRON INSULATION	OLE LTIPOLE RADIUS	ORDER (IN)	= = 4.0	2 CA 15 CC	CULATIONAL		= = 2345.	3 3 3 3	NUMBER O		z = (IN) =	1.0000
LAVER		CURDEN 144/14/1			SPACER (IN)	RINNER (IN)	ROUTER (IN)	LENGTH (IN)				
2	17.03 14.03 11.26 4.03	320.523 320.523 320.523 320.523	1.3003	25.6932 15.0238 13.7738	00028 00009	1.500B 1.6800 1.9450 2.1250 DEFFIGIENTS	1.6650 1.8450 2.1100 2.2900	1.9060 1.0060 1.3330 1.6360				
(4) = 5(N) = 1(H) =	1.37956 8.9336 1.30356 6.1746	-01 9. -00 4.	1295-06 - 3705-05 7305-06 - 0446-08	4.792E-02 4.487E-09 2.317E-03	2.240E-03	-9.584E-04 -1.677E-15 -4.634E-09						
	x ()		GT (KG + I N / I			S (KG-IN/IN)	G#					
	.00 .20 .30 .30 .50 .50 .70 .40 .70 .40 .40 .70 .40 .40 .40 .40 .40 .40 .40 .40 .40 .4	00 0 00 0 10 0 00 0 00 0 00 0 00 0 00 0	2J.64322 2J.68322 2J.68322 2J.68326 2G.68326 2G.68326 2J.68354 2J.68351 2G.67535 2G.67535 2G.67535 2G.67535 2G.67535	19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1	8988 8988 8988 8985 8989 8908 8714 8197 6471 4324 4324 8869	.89335 .89335 .89335 .89335 .89336 .89336 .89337 .89344 .89344 .89354	1.000 1.000	100 100 100 100 1999 1966 1962 1013 1775				

MEDICAL USES OF ACCELERATORS

Editorial Comment

This session on the medical uses of accelerators was a panel discussion composed of the following members:

Chairman: Edward Knapp

Los Alamos Scientific Laboratory Los Alamos, New Mexico 87544

Bruce Cork Lawrence Berkeley Laboratory University of California Berkeley, California 94720

Robert S. Heusinkveld University of Arizona Medical Center Tucson, Arizona

Andrew Koehler Harvard University Cambridge, Massachusetts 02138 Peter Almond M. D. Anderson Hospital & Tumor Institute University of Texas Houston, Texas 77025

Ronald Martin Argonne National Laboratory Argonne, Illinois 60439

Donald Young Fermi National Accelerator Laboratory P. O. Box 500 Batavia, Illinois 60510

Only the remarks of Dr. Heusinkveld are available for these proceedings. For those wishing further information on the contribution made by each panel member, it is suggested that they be contacted directly at their laboratories.