FERMILAB HIGH-FIELD OPTION

POPAE DIPOLE - MAGNETOSTATICS

S.C. Snowdon
Fermi National Accelerator Laboratory* Batavia, Illinois 60510

Summary

Magnetic field computations have been performed for a four-inch coil aperture 45 kG dipole magnet that may be utilized in a highfield option of popaE. ${ }^{1}$ A cold iron version utilizing flat pancake coils has been explored to determine the magnetostatic effectiveness of a simple coil geometry. Suitable locations have been found for rectangular blocks of conductors each consisting of 280 turns of .040 in by . 040 in conductor.

Design

Since the POPAE storage device is operated with direct current, the wire chosen for the coil winding may be reasonably small. A convenient choice is .040 in by .040 in carrying about 200 A which gives a comfortable current density of about $225 \mathrm{kA} / \mathrm{in}^{2}$. The field accuracy requirement for a storage ring is tighter than that required in an accelerator. Hence, it was felt that accurately positioned blocks of current might be preferable to a monolithic random wound coil. A flat pancake was chosen for the individual block as being the simplest coil to wind. Before potting to the final shape the ends are turned around elliptically and bent up at an incline. This gives a coil package consisting of flat pancake blocks . 420 in by 1.177 in each bent up along inclined planes at the ends such that they nest onto a cylindrical bore tube, the length of each block being chosen to minimize the longitudinally integrated multipole contribution.

The field in the transverse section has been calculated using a complex variable method. ${ }^{2}$ A search mode is employed which minimizes the energy content within the reference radius of a preselected number of multipoles higher than the dipole. The parameter varied is the horizontal location of the inside edge of each flat pancake coil. Since the ends occupy only a small part of the magnet length relatively few trials with varying positians for the turn around centers suffice to minimize the higher multipole coefficients of the longitudinally integrated fields.

Tables $1-3$ are self-explanatory. Table 4 refers to the longitudinally integrated fields in which inclined elliptical turn around ends are used, the turn centers being separated by the length indicated. The entries $T(N), S(N)$, and $R(N)$ refer to coefficients in a multipole expansion of the longitudinally integrated magnetic field. Successive terms give ΔB at the reference radius for the dipole, sextupole, decapole, etc. The contribution due to the currents with no shield is $T(N)$, the contribution from the iron shield is $S(N)$, and

[^0]$R(N)$ is the ratio $T(N)+S(N)$ divided by $T(1)+$ S(1). Table 5 is similar calculation in which the contribution from the ends is omitted and the length set equal to one inch. The median plane field in the transuerse section is given by $B T$. Columns $B A, B S$, and $E N$ give respectively the contribution in the absence of the shield and the total Eield normalized to unity at the center. The entry DELR(N) is an estimate ${ }^{3}$ of the magnitude of the change in $R(N)$ induced by saturation effects in the iron shield. Finally the net flux entering the iron is given from which one sees that if average fields less than 18 kg are desired in the iron the magnet diameter is about 22 inches.

References

1. T.L. Collins, D.A. Edwards, J. Ingebretsen, D.E. Johnson, S. Ohnuma, A.G. Ruggiero, L.C. Teng, Fermilab Technical Note TM-547 (Feb. 1975)
2. W.W. Lee and S.C. Snowdon, TEEF Trans. on Nucl. Sci., NS-20, 726 (1973)
3. M.A. Green, Kernforschungszentrum Karlsruhe External Report 3/71-7, June 1972

Table 1. Performance Parameters

Field Strength	45 kG
Effective Field Length	237 in
Good Field Width	3.0 in
Field quality $(\Delta B / B$ at lin Rad.)	$\pm .01 \%$

Table 2. Design Data
Conductor Current (45 kG) 212 A cond. Size(no insulation) . 040 in by. 040 in Effective Current Density $\quad 132.5 \mathrm{kA} / \mathrm{in}^{2}$ Total Number of Turns 3360 Insulation Thickness .001 in Iron Shield Inner Radius Outside Dimension of Iron 22 in by 14 in Total Length of Iron 252 in

Table 3. Critical Fields, stored Energy, and Forces

Maximum Field in Conductor	48 kG
Stored Energy	1 MJ
Inductance	47 Hy
Effective Rad. of Cond. Blocks	2.875 in
Traction at Effective Radius	
Angle x-traction	
(Deg) (lb/in ${ }^{2}$)	(1b/in ${ }^{2}$)
01005	0
$40 \quad 1465$	-823
$50 \quad 1475$	-695
90 0	0
Displacement Force	
$\langle x-d i s p l .=.010 \mathrm{in}\rangle$	29 lb/in
$\left(y-d i s p l .=.010 i_{1}\right)$	$291 \mathrm{~h} / \mathrm{in}$

Table 4. popae dipole with pancake coils ano gircular shielo

[^0]: *Operated by the Universities Research Association, Inc., under contract with the U.S. Energy Research and Development Administration.

