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The behavior of an intense relativistic charged 
particle beam is studied by determining a two-dimen- 
sional equilibrium solution of the laminar flow, mono- 
energetic particle dynamics equations. With these re- 
lations formulated in azimuthally symnetric cylindrical 
coordinates, the free parameter method is used to derive 
the most general similarity variable n(r,z) appropriate 
to the equations and an exact solution is found in 
terms of this unknown. The solution is interpreted as 
a force-free converging or diverging particle beam pro- 
pagating in the z direction within a conical drift 
chamber, 

Introduction 

Experimental advanceslm3 of recent years have ac- 
celerated interest in transport phenomena for intense, 
relativistic charged particle beams. Propagation pro- 
cesses include injection into plasmas or neutral 

4-7 gases , vacuum propagation, 339 and use of magnetic ,n 77 
guide fields'""'. Only representative references have 
been listed in each of these areas. 

While it is improbable that steady state condi- 
tions are closely approached in these pulsed beams, the 
nature of equilibria provides a useful tool in studying 

beam behavior. Harmner and Rostoker' have derived a 
one-dimensional equilibrium by assuming a phase space 
distribution function equal to a constant multiplier 
of Dirac delta functions in the invariants of classi- 

cal mechanics. Benford and Book6 found hollow beam 
equilibria in the presence of plasma back,;urrents and 

the same authors have published a sumnary of both 
axial and azimuthal intense relativistic beam equilibria. 
We have recently derived a one-dimensional vacuum 

equilibrium'. 

In this report, similarity analysis of the laminar 
flow, monoenergetic particle dynamics is used to de- 
velop a two-dimensional force-free particle flow, in 
contrast to the periodically-pin cp;ng, axially depen- 
dent equilibrium of Poukey, et al . 

Derivation of the Similarity Variable 

The laminarequations of intense, relativistic 

charged particle flow5 are coupled, nonlinear partial 
differential relations, describing self-consistent 
electromaqnetic fields by Maxwell s equations and rela- 
tivistic particle dynamics with the Vlasov equation and 
the Lorentz force law. Under conditions of azimuthal 
symmetry and time independence and an ad hoc assumption 
that the azimuthal component of velocity and axial com- 
ponent of magnetic induction are zero, these equations 
can be written as 
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, 
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Eqs.. (1) through (5) have been_recast into dimension- 
less form by the dependent variable transformation 

mc2 [y'(r,z) -11 + q@(r,z) = Kg 9 (6) 
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+(r,z) is electr2magnetic scalar potential, p(r,z) is 
chars density, B(r,z) is the magnetic induction vector 
and v(r,z) is the particle velocity. Constants m and 
q represent particle mass and charge, c is vacuum velo- 
city of light and ED is the permittivity of free space. 

L is an arbitrary scalebf distance. 

Here we assume that dimensionless velocity 'Ei, and 
consequently y, can be expressed as a function of simi- 
larity variable n(r,z). Restraints on the similarity 
variable are derived by replacing partial derivatives 
with respect to r and z by the appropriate chain rule 
operators. If Eqs. (1) through (5) are to be consis- 
tent with the similarity assumption 

g(n) -g+g f 0 3 (10) 

where g(n) is an arbitrary function. By comparison to 
the directional derivative along a curve of constant n 
in the (r,z) plane, one concludes the most general 
form of the similarity variable to be 

rl tr,z) = $-- 
0 

(11) 

where z. is an undefined constant. 

Similarity Solution 

Given the explicit form of the similarity variable 
in Eq. (11). the chain rule operators transform the 
beam equations (1) through (4) into a set of ordinary 
differential equations, 

q2(q2+1) d2y t q(2n2+l) dv = r2N 

dn2 dn 
3 (12) 

d [rb,l 

J-I2 -xi---- + r2NBr = 0 , (13) 

d [rb,l 
n 7 + r2NBZ = 0 , (14) 
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dhB,l 
rbg + n2 - 

dhB,l 
dn +'l7=0 (15) 

After eliminating r2N, rbg and components of 8, the 

system is reduced to a single differential equation 
in one dependent variable, 

d2yt-a. 2nQl' 
2 

iY=v + 

dn2 0 
n(n'+l) dn ~'-1 drl . (16) 

Fortuitous selection of a dependent variable trans- 
formations permitted an exact solution of Eq. (16) to 
be obtained. 

Y = cash [A,ln(A,p)] 3 (17) 

where A, and A2 are constants of integration, 

li, = [Z-Z,] t [r' 

r 

+ (z-20)211'2 t 

= sin X [l t cos Xl-' > (18) 
and X equals tan-'(r/z-zo). 

Physical Interpretation of the Solution 

Before attempting to interpret the solution, we 
express the physical transport variables of the pro- 
blem in terms of y and the independent variables. 
Including Eq. (6), these are written as 

mczo h 
p(r,z) = *Y (r-,2) 

9r2 

mcA, 
Be(r,z) = 7 Y (r,.z) 

> (19) 
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= c[p-l If2 
y[r2 + (z-z,)~]~'~ 
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Y 

[sin XZr + cos XTzl . (21) 

observes that Eq. (21) describes particles 
moving at constant velocity along straight tra- 
jectories on converging or diverging rays, emanating 
from the focal point (0, 8, zo). X represents the 

angle between a given trajectory and the z axis. To 
prevent infinite values of p and Be as r + 0, a 

centerline conical conductor with X= AL is estab- 

lished. When a second (zero potential) conducting 
surface of revo;;tion with X = X0 is assumed, a 

force-free beam in a conical drift chamber is de- 
scribed. This arrangement is il!ustrated in Figurel. 

fied, 
The constants of integration can now be fdenti- 

using energy conservation Eq. (6) and Eq. (17) 
evaluated at y. and yCL, corresponding to potential 

mO on the outer conical surface and @Cc on the center- 

line electrode. In oarticular. 
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Figure 1. Geometric Interpretation of the 
Similarity Solution. 

must be supplied through the center conductor, to pro- 
vide the required discontinuity in B . Similar appli- 
cation of Ampere's Law at the outer Boundary defines 
the total beam current to be 

'6 = -'CL 

. (241 
a function depending only upon yo, yCL, and the geo- 

metric factor in Al. 

To illustrate the character of the solution, Fi- 
gures 2 and 3 show the current propagated in a 10.5 
MeV electron beam and required centerline current, as 
a function of positive and negative centerline poten- 
tials, respectively. 
factor with X 

For these plots, the geometric 
= 150' and XCL = 179.6" is used. 
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Figure 2. Currents at Positive Centerlfne Potentfals 
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Figure 3. Currents at Negative Centerline Potentials 

For increasingly positive $CL, the magnitudes of 

A, and yCL grow monotonically. The centerline current, 

in this case positive and generated at least in part 
from the beam return current, and Ib are increasing 

and their ratio approaching unity. 

At negative centerline potentials ICL is negative, 

in the same sense as beam current, and must be exter- 
nally supplied. For values of @CL such that yCL < yo/2, 

beam current exceeds ICL and has magnitude similar to 

the outputs of present-day pulsed accelerators 2,3 in 

this voltage range. 

In the limit of small convergence angles, the 
similarity solution reduces to the one-dimensional 
vacuum beam equilibrium of Reference 9. 

Conclusions 

Similarity solution of the laminar, manenergetic 
dynamic equations at relativistic particle energies 
have demonstrated theoretical existence of a force- 
free two-dimensional charged particle beam. The 
result corresponds to a converging or diverging beam 
in a conical drift chamber, with current magnitudes 
of practical interest. 

*Partially taken from a thesis by A. M. Chodorow to 
University of New Mexico in partial fulfillment of 
requirement for the Ph.D. degree. Work supported by 
National Science Foundation Graduate Traineeshlp Grant. 
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