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Summary 

Charged particle flow in planar geometry is general- 
ly classified into two phenomenological regimes. At re- 
latively law current injection densities, less than a 
critical function of length and potential across the 
drift space and entrance kinetic energy, all charges pro- 
pagate across the entire region and the flow is termed 
injection limited. Space charge limited flow occurs at 
supercritical injection densities and is characterized 
by partial particle reflection at the plane of minimum 
kinetic energy. Solutions of the laminar, monoenergetic 
beam equations demonstrate the existence of a transition 
region, 
in 

rather than a single critical current density, 
which either flow may exist. 

Introduction 

Charged particle propagation between planar elec- 

trodes has been extensively considered, since Child' re- 
ported studies of space charge limiting in diode regions. 

Amboss has extended the analysis to thermally distri- 
buted particles. The diode equations have been solved 

at relativistic energies by Acton3, Boers and Kelleher4 

and Jory andTrivelpiece5. Poukey and Rostoker' investi- 
gated injection of relativistic particles into a one- 
dimensional vacuum drift space. 

The geometry of rectilinear charged particle flow 
is illustrated in Figure 1. 
region, 

Drift space is a vacuum 
enclosed by two unbounded and infinitelv con- 

ducting planes separated by a distance L. A siigle spe- 
cie charged particle beam, assumed to be nonthermal and .._ -. - 
monoenergetic, is normally and uniformly injected with 
entrance kinetic energy KD at the reference (zero) po- 

tential surface at x = O.- 
is denoted by JO. 

The injection current density 

+ y pmtp:;;:tic 

Injection Plane Plane 

Figure 1. Planar Drift Space 

Initially, the space charge effect retards particle 
motion. At x = x,, minimum kinetic energy is achieved 

and some particles may be reflected toward the injection 
surface. To the right of the plane of minimum kinetic 
energy, the self-consistent electric field is directed 
to accelerate charges toward the extraction surface. 

The problem is clearly nonphysical for several 
reasons, but represents an approximation to finite ther- 
mal beams, which propagate in a short drift zone com- 
pared to the radial beam dimension and is useful in 
studying general beam behavior. 

Beam Equations and Solutions 

Here, we consider the steady state solutions of the 
laminar beam equations, rather than the transient re- 
sponse of reference 6. Laminar charged particle flow 
is governed by Maxwell's equations, relating electro- 
magnetic fields and sources, the Vlasov formulation of 
particle distribution function evolution and the Lorentz 

force law', 
the idealized 

After additional simplifications due to 
geometry and time independence, the go- 

verning equations are written as n 

02$(x) = dy = - .y 

K, = mc2 [Y(X)-11 + c++(x) > (2) 

Ti, = sGdzp&$e , x ~ x1 , 
= CP(X)[zt~~-12’2 i x ~ x, . 

In this formulation, b(x) is the electromagnetic scalar _ 
potential, p(x) is the charge density, ~0 equals per- 

mittivity of free space, m and q represent particle 

mass and charge and y(x) is defined by (~-v~(x)/c')-'/~, 
where v(x) is particle speed. T symbolizes the frac- 
tion of injection current transmitted into the drift 
region to the right of the minimum kinetic energy plane. 

Two variables are eliminated to produce the second 
order, nonlinear differential equation 

$=“,g+ 9 x2x1 ’ 

where 

[2-ThJo 
"1 =mc3, 

0 

, (5) 

‘NJ0 
h2 = mc3, (6) 

0 

Eq. (4) is solved subject to the boundary conditions 
(a) y(x) is continuous at x = x,, 

(b) dy/dx = 0 at x = x1, 
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(c) y(0) and y(L) are known from Eq. (2). 

The first integral of Eq. (4) is elementary, 
yielding 

StL = 43 
dx 1 

1’12 
x<x - 1' 

= [2n*] 1'2 pxbl1"'- [Ax1 1-yp2, 

x>x _ , * (7) 

The second integral can be written exactly in elliptic 

and Zeta functions 5g80r solved in series form3'4. How- 
ever, numerical integration is simple and direct. The 
nature of the transition region is equally well illus- 
trated by the nonrelativistic approximation, which can 
be written in simple closed form. For K. and \q@(L)l 

much less than mc 2 
, 

I[ I 
112 

v(x)+Nx, 1 vb+vh, 1 J 2mco [ 1 
l/2 

x-y = - q-pzgq 

x<x -1' 

= [G-” [v(x)+2vtx,j juiii-u~x,~] 1’2 , 
x>x _ 1 * (8) 

Injection Limited Flow 

By definition, injection limited flow implies that 
every charged particle propagates across the entire 
length of drift space and the transmission fraction is 
necessarily unity. Application of boundary conditions 
at x = 0 and x = L are sufficient to determine the un- 
known coordinate of kinetic energy minimum (xl) and the 

particle velocity at this plane, y(x,) or v(x,). 

The maximum current density of the injection limit- 
ed regime can be determined by solving Eq. (8) for Jo 
and evaluating extrema by differentiation with respect 
to v(x,). The value corresponding to maximum J,, is a 

solution of the equation 

Cv(O)-2v(x m(Lbv(xl)11’2 

+ [v(L)-2v:xl),~v(o)-v(x,)~l~2 = 0 I (9) 

the only physically acceptable root of which is 

4x,) = +-#g)- * (10) 
Substitution of this result into Eq. (8) identifies the 
desired result 

[JomaxI = 13 1 b(o)+v(L)13 . (11) 

At injection current densities exceeding this value, no 
physical solution exist for T = 1. 

It can further be shown, that for injection current 
densities in excess of 

lJol, = 131 [v3(D)tv3(L)1 , (12) 

the transport variables p, o and y or v do not possess 
unique solutions. 

To illustrate these properties of injection limited 
charge flow, Figure 2 graphs the propagation length 
achieved by an electron beam of given injection current 
density and entrance kinetic energy of 5 MeV as a func- 
tion of y(x,). Dual solutions exist for minimum values 

of the relativistic parameter in the interval from 
unity to 4.51. 
to y(x,) 

Maximum propagation length corresponds 
equals 1.71. 

Figure 2. Properties of Injection Limited 
Electron Beam Propagation. 

Space Charge Limited Flow 

In the case of space charge limited flow, particle 
reflection at the plane of minimum kinetic energy re- 
quires that @(xl) equals Kg/q and y(x,) is unity. Boun- 

dary conditions are, therefore, determinants for the 
values x, and T. 

We define the critical injection density to be the 
value of Jo at the onset of space charge limiting, that 

is, the density at which both y(x,) and the transmission 

coefficient T are unity. For the nonrelativistic ap- 
proximation, Eq. (8) demonstrates the critical value 
to be 

lJOcritl = 131 Cv3(0)+v3W1 . (13) 

Therefore, space charge limited solutions of the beam 
equations exist at current densities well below the 
maximum injection limited value, given by Eq. (11). 
Furthermore, since Eqs. (12) and (13) are identical, 
one notes that the onset of space charge limiting and 
the lower bound of doublevalued injection limited solu- 
tions correspond exactly. 

Conclusions 

Solutions of the laminar, monoenergetic, steady 
state beam equations have shown the existence of a 
region of injection current densities in which either 
space charge limited or injection limited charged par- 
ticle flow may theoretically exist. In this same band, 
the injection limited solution has a multiplicity of 
two. In the nonrelativistic approximation, the upper 
and lower extremes of the region have been exactly 
defined. a 

3 9qLLJ0 
cv (0)+v3(L)1 5 --p-$- ( [v(W(L)13 ’ (14) 
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Numerical evaluation of transport solutions at relati- 
vistic energies demonstrates a completely analogous 
situation. These findings are summarized in Figure 3 
for electron beams of two entrance kinetic energies. 
The broken curves of transmitted current density versus 
injected particle density in a lo-centimeter drift 
space illustrate the injection limited solutions for 
the problem, while solid curves represent space charge 
limited flows. The overlapping region is clearly seen. 

- - - Injection Limited 
Space Charge Limited 

lo141 ' ' ' I11111 I I II11111 I I 111111 
lo4 105 lo6 l7 

Propagated Current Density (-Amperes/meter' 3 

Figure 3. Regimes of Intense, Charged Particle Flow 

The duality of charged particle flows in the 
transition region is analgous to that in fluid dyna- 
mics. Above a critical Reynold's number, either la- 
minar or turbulent flow may occur at identical entrance 
and boundary conditions. 

While stability analysis has not been performed, 
it is anticipated that supercritical injection limited 
propagation is unstable. As in the fluid flow example, 
in the presence of perturbations, catastrophic change 
to a space charge limited condition may be expected. 
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