IEEE Transactions on Nuclear Science, Vol.NS-22, No.3, June 1975

harp, a shorr puise, hich current meectron beam acceleratort

K. R. Prestwich
Sandia Laboratories
Albuquerque, New Mexico 87115

Summary

A $3 \mathrm{MV}, 800 \mathrm{kA}, 24 \mathrm{~ns}$ electron beam accelerator is described and the results of initial switching experiments are discussed. The generator will provide a source for studying the physics of processes leading to electron beam driven, inertially cont'ined fusion. The major components of the accelerator are two diodes with ε comon anode, twelve oildielectric Blumieins with low jitter (<2 ns) multichamel switches, three intermediate storage capacitors, a trigger pulse generator and two Marx generators.

Introduction

At Sendia Laboratories, we are investigating the possibilities of producing inertially confined pulsed fusion driven by high power electron beams. 1,2 This fusion schere requires development of electron
beam accelerators with peak powers of 1013 - 1014 W .3 The Harp accelerator represents an initial scalable effort to decrease the pulse width and increase the peak power of relativistic electron beam (REB) generasors that utjize transformer oil as the principle dielectric. It will provide an accelerator for studying diode physics, beam pinching and energy deposition as well as provide practical experience on utilizing low jitter switch systems.

General Description

An artist's sketch of the accelerator is shown in Fig. I. Energy is supplied to each of the two diodes from six sets of parallel plate transmission lines connected in a Blumlein configuration. The transmission lines can be charged to 2 MV by a Marx
generator or to 3 MV by utilizing intermediate storage capacitors. The output pulse is initiated by trigsered oil dielectric, rail switches that require large amplitude, fast-rising trigger pulses for low jitter operation. The trigger pulse is generated from a Marx generator and a water dielectric pulse-forming line (FFL). It is then transmitted to the twelve switches through oil-insulated transmission lines. Initial construction of the accelerator has been completed and experiments to determine the simultaneity of six untriggered, multicharnel oil switches have been performed. In the following, the results of these experiments and design details of each of the major components are discussed.

Diode

Figure 2 is a sketch of the diodes. The vacuum envelope is constructed with a stack of four 1.2 m diameter, 5 m thick, acrylic insulators and intersperced with 6.4 mn thick aluminum grading rings. Equipetential plots of this structure indicate the voltage is uniformly distributed across each insulator within 3 percent. Since vacuum flashover is time dependent, with the short pulse duration and the well-graded insulator stack, the flashover electric field is estimated to be $160 \mathrm{kV} / \mathrm{cm}$ and the flashover voltage for this diode should be 3.3 MV . The estimated inductance is 26 nH with a 61 cm diameter cathode and 49 nH with a 15 cm diameter cathode. Possible inductive effects of the pinching beam have been neglected in these estimates. Thus, for a matched 7.3Ω diode impedance, the diode 10-90 percent current risetime should be 4 ns . Since the Blumlein switches will produce approximately a 10 ns output voltage risetime, the voltage across the insulator should not

Figure 1. - Harp Electron Beam Generator

[^0]exceed 3 MV . Each diode should produce a 3 MV , $400 \mathrm{kA}, 24 \mathrm{~ns}$ pulse of electrons or, if operated in a mismatched mode zor better pirching conditions, a $1 \mathrm{MV}, 650 \mathrm{kA}$ beam. A $6-19 \mathrm{nH}$ diode has been designed For operation in this mismatched mode. It is constructed with six 1.3 cm thick, 1.2 m diameter inculators and should have a flashover voltage alightly greater than 1.5 MV .

Figure 2. - Diode Sketch

Blumleins

The voltage pulses that are applied to the

 diode are generated from twelve pairs of transmission Iines connected in a Blumlein configuration. These 22Ω, oil-dielectric transmission lines are 2.2 m wide and 2.4 m long with a 10 cm separation between the electrodes. The electrodes are 3.2 mon thick steel plates welded onto one-haif section of 10 cm diameter pipe with adequate supports to maintain a 1.6 mm flatness across the sheets. The 5 cm edge radius witi $\equiv 10 \mathrm{~cm}$ spacing lowers the field enhancement at the edge to the point where the probability of breakdown at the cdge is less than within the main body of the transmission lines due to the area depenaence of the dielectric strength. Figure 3 is a* photograph ot' the six stacks oi the transmission lines.

Fiyure - - Photorreph of Karp Biumleins and Load Reaistor

Each stack hes zire electrodes and forms two Blumileins Fitn : common ctrode in the center of the stack. Thi common wlectrole becomes the hich-voltage terminal furing the time wile the Blumleins are being discharos. nize wragement minimizes any capacitive

Loading from the high voltage terminal to ground during discharge. Six Blumleins are connected in parallel around the circumference of each diode, as shown in Fig. I and 3. This arrangement produces an effective impedance at the diode of 7.3Ω. If the transmission lines are charged directiy from the Marx generator in 760 ns, the breakdown voltage of the transmissior. lines is 2.3 MV. By using intermediate storage capacitors, the charge time can be reduced to $<200 \mathrm{~ns}$ and the breakdown voltage can be increased to 3.7 MV . The supports for the transmission lines are polyethylene straps connected as shown in Fig. 3. Tests to debermine the tracking voltage of the insulators resulted in ares occurring between the electrodes of the transmission line rather than the insulator tracking. The Blumleins will be switched with 12 lowjitter, oil-dielectric rail switches recertly developed at Sandia Laboratories for this applicstion. 4 The configuration of these switches is shown in Fig. 4.

Figure 4. - Oil Rail Switch Electrodes

The trigger electrode (blade in Fis. 4) is a sharp edged, 3.2 mm thick brass plate. It is biased at approximately one-third of the transmission line charge voltage ($-V$) and geometrically located for minimum electric field enhancement during charge. For triggering, this electrode is rapidly ($\sim 20 \mathrm{~ns}$) pulsed to $+V$. Both of the gaps between the main electrodes and the trigger blade are overvolted and close nearly simultaneously. At $\angle M V$ an average of 10 channels closed, producing an 8 ns, $10-90$ percent current risetime. The closure time of the switch varies with the voltage across the switch, as shown in Fig. 5.

Figure 5 , - Triggered Oil Switch Closure Times vs. Voltage Across Main Electrodes

The jitter is 1.3 ns. Spacing between the main clcctrodes is 6.9 cm and the self-breakdown voltace is 2.3 MV. Experiments also indicated that a trigger pulse amplitude as low as 0.44 V can be used and a jitter of < 2 ns maintained if the trigger electrode
is Iccated nearer to the ground electrode and biased accordingly (0.19 V). The low jitter operation of these switches should allow twelve Blumleins in parallel to be switched with minimal degradation to the cutput pulse waveshape. When the intermediate storage capacitors are used and the Blumleins are charged more rapidly, the switch will be operated at higher electric fields and should produce even faster current pulse risetimes.

As mentioned above, the luw-jitter triggered switch operation is dependent on rapidiy pulsing the trigger electrode with a $+V$ voltage. In Harp, this voltage puise must be applied to the twelve switches simultaneously. The pulses are produced by charging an 80 ns water dielectric PFL with a Marx generator to approximately 3 MV . An SF_{6} spark gap connects this PFL to a system of oil-dielectric transmission Iines that have equal length to all twelve switches, as shown in Fig. I. The oil-transmission lines are coaxial and have a square outer electrode and cylindrical inner electrode. It has four junctions. One of these has the correct impedance match; others are mismatched due to size limitations. The transmission lines appear as open circuits before the main Blumlein switches close and voltage doubling occurs, reeovering the voltage loss due to the mismatched transmission lines. The transmission lines provide 21 ns transient time isolation between each of the four nearest switches. An isolating resistor and switch separates the trigger electrode from these transmission lines. The cnergy left in the transmission lines after the main Blumlein switches close is absorbed in the isolation resistors.

Two-electrode, self-ciosing rail switches may also ce used when the Blumleins are rapidly charged. Initial tests on one Blumlein with this switch produced $1.0-1.5 \mathrm{~ns}$ jitter and 10-90 percent risetimes of 6-9 ns when charged in 50-130 ns. 5 Subsequently, six of ther have been tested simultaneousiy on one-half of the Farp Blumleins using a configurafion similar to that shown in Fig. 6. The Marx generator output is attached to Line 2. The lower sets of transmission lines (1-2 and 2-3) were used as intermediate storage capacitors and charged the upper lines ($3-4$ and $4-5$) through three gas switches, 6 one for eaci two stacks of transmission lines.

Figure 6. - Transmission Line Arrangement fior TwoElectrode Switch Tests

Table I is a summary of the data from this experiment.

TABLE I

UNIRIGGERED MUITICHANNEL SWITCH DATA

$\begin{gathered} \text { Charge } \\ \text { Time } \\ \text { (ns) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Range of } \\ \text { Closure } \\ \text { Times } \\ \text { (ns) } \\ \hline \end{gathered}$	Single Switch Jitter $(n s)$	No. Brizht Channels	Switch Risetime\qquad
90	3.9	1.6	4.2	8.8
120	4.8	2.1	4.1	9.1
130	5.5	2.6	3.2	9.7
170	7.3	3.2	2.5	11.0

The range of closure time is the average maximum time separation of the closure of the switches. The single switch jitter is inferred from this range of closure times and its standard deviation assuming a normal distribution. The jitter is slightly greater (2.6 ns as compared to 1.5 ns) than the jitter in the single Blumlein, two-switch experiment. The above data was taken at a lower voltage and incluces the effects of jitter in the three gas switches.

Figure 7 is the output voltage wave shape produced across the load resistor when the lines were charged in 150 ns . The outout risetire is 12 ns .

Figure 7. - Output Voltage Waveshape

Intermediate Storage Capacitors

As indicated in the discussion of the Blumleins, it is necessary to cheree the trencmiscion lines in <200 ns to produce 3 MV output palses. The taster charge is accomplished by utilizing three coaxial water-dielectric intermediate storage capacitors. The outer cylinder is 75 cm diameter and 2 m long. These capacitors will be charged by a Marx generator in approximately 700 ns and discharged through low-jitter $3 \mathrm{MV}, \mathrm{SF}_{6}$ gas switches into the Blumlein uransmission lices. The center element of the electrode stack must be connected to ground through an inductor. Ir Harp, one $4_{4} \mu \mathrm{H}$ inductor is used ror aiach two stacks. The inductors must be at least $4 \mu \mathrm{H}$ to minimize the
discharging of the transmission lines after the Blumiein switches have closed. With this inductor and the circuit arranged to insure that the prepulse voltase remains less than 10 percent of the charge voltage, the three intermediate storage capacitors will charge the Blumleins in 175 ns . If it is desirable to charge faster than 175 ns , six intermediate storage capacitcrs, three positively charged and three negatively charged, could be used and connected, as shown in Fig. 8. 3 This arrangement is capacitively balanced and does not require connection from the center electrode to ground. If the prepulse voltage amplitude is maintained below 10 percent of the charge voltage, the charge time for this arrangement is estimated to be 125 ns . In this case, the prepulse voltage is generated because of the differing inductance and capacitance from the top and bottom plates to the tank. When attempts are made to balance these capacitances and inductances, the 125 ns charge tine results.

Figure 8. - Intermediate Storage Capacitor PiusMinus Charging Arrangement.

Marx Generators

Both the Marx generator for charging the intermediate storage capacitors or Blumleins and the one for producing the trigger pulse are $2.3 \mathrm{MV}, 125 \mathrm{~kJ}$, $7 \mu \mathrm{H}$ generators. They are constructed in the same tank with a configuration develcped for the Marx
generator in the Fiydra electron beam generator. 6 Both sets of capacitors are charged from a single $\pm 60 \mathrm{kV}$, dc power supply that is connected such that one Marx has a positive output and the other a negative output. The jitter of these Marx generators was measured to be $<20 \mathrm{~ns}$.

Acknowledgements

The author would like to acknowiedge his colleagues D. H. McDaniel, R. S. Clerk, D. L. Johnson, and T. H. Martin for their contributions to work discussed in this paper. He would also like to acknowledge Marlin Aker and his associates for the mechanical design of the accelerator. A. W. Sharpe and J. F. Corley provided valuable technical assistance on experiments and with the design and fabrication of the accelerator.

References

1. G. Yonas, J. W. Poukey, K. R. Prestwich, J. R. Freeman, A. J. Toepfer, M. J. Clauser, Nucl. Fus., 14, 731-740 (1974).
2. J. Chang, M. J. Clauser, J. R. Freeman, J. A. Halbleib, D. L. Jonnson, J. G. Kelly, G. W. Kuswa, T. H. Martin, P. A. Miller, L. P. Mix, F. C. Perry, J. W. Poukey, K. R. Prestwich, D. W. Swain, A. J. Toepfer, M. M. Widner, T. P. Wright, Fifth Conference on Plasma Physics and Controlled Nuclear Fusion, International AEC, Tokyo, Japan, November 11-15, 1974.
3. T. H. Martin and K. R. Prestwich, Proceedings of the International Conference on Energy Storage, Compression and Switching, Asti, Italy (1974).
4. K. R. Prestwich, Proceedings of the International Conference on Energy Storage, Compression and Switching, Asti, Italy (1974).
5. D. L. Johnson, Proceedings of the International Conference on Energy Storage, Compression and Switching, Asti, Italy (1974).
6. T. H. Martin, IEEE Trans. on Nvel. Sci., NS-20, No. 3, 289 (1973).

[^0]: This work was supported by the U.S. Energy Research and Development Administration, ERDA.

