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Summary 

Target backings cooled by water i n  l i nea r  
flow have proven capable of d i ss ipa t ing  heat 
loads from 2 k'vl ior. beams focused t o  about 20 m 
for extended periods without s t ruc tu ra l  f a i lu re .  
In  addition t o  the  more obvious Eodes of f a i i u r e  
by p l a s t i c  deformation and melting, metallog- 
raphic s tud ies  of damaged t a rge t s  have revealed 
deep voie  penetrations along grain bomdaries.  
The t a rge t ry  l imi ta t ions  imposed on maximum usable 
beam power by heat t ransfer  from the  bacBir>g t o  
the  cooling f l u i d  have been investigated.  Neutron 
producing l i fe t imes  of LiF t v g e t s  have been com- 
pared for d i f f e ren t  proton beam and coolant flow 
conditions. 

Introduction 

Intense hydrogen ion beans with energies up 
t o  a few MeV and severa l  kW of  maximum power a re  
eas i ly  focused t o  power dens i t ies  of the order of 
lOkhT/cm2, imposing extreme thermal loading on 
t a rge t  backings. A design f o r  a t a r g e t  backbg 
cooled by water i n  l i nea r  flow has been evaluated 
by examining backing surface temperature as a 
f m c t i o n  of bean power and beam power density. 
These experiments were undertaken both t o  prov5de 
a quant i ta t ive  measure of t a rge t  cooling capa- 
b i l i t y  under actual beam conditicns and t o  iden- 
t i f y  the  phenomena t h a t  induce s t ruc tu ra l  f a i l u r e  
during thermal loading. 

Experimental Apparatus 

Target Description 

Cooling systems employing water i n  vortex 
f l w  have demonstrated power density capab i l i t i e s  
of the required order of magnitude. 
ings a re  used t o  sxpport neutron producing tar- 
get materials,  t he  additional desigr requirements 
l i s t e d  by Coon2 favor the s impl ic i ty  of a l i nea r  
coolant flow configuration. Sach a systen was 
designed at Brookhaven a decade ago.3 

When back- 

b 
Recently, Wegner has redesigned t h i s  de- 

vice f o r  use with intense ion beams. A section 
of a cy l indr ica l  tube of backing mater ia l  about 
1 mrc th ick  i s  f l a t t ened  by forming i n  a j i g  t o  
provide a water chvlnel 1 m. x 36 w x 38 mm 
long. 
face and sea ls  t o  the  vacuum system with an elas- 
tomer O-ring. 
design i s  t he  thin,  short  channel t h a t  forces the  
coolant i n to  a high ve loc i ty  l i n e a r  flow across 
the  heated area. This fea ture  has been used suc- 
cess fu l ly  in  t a rge t  backings, beam stops, and de- 
f in ing  s l i t s  designed f o r  the  Cornell Dynamitron 
(Radiation Dynamics Model PEA-3). W i n g  routine 
operations over the  pas t  year, icn beams witY- 

The f l a t t ened  area forms the backing sur- 

Here the e s sen t i a l  f ea tu re  of the  

powers ~p t o  8 kW have been handled by t h i s  
equipment without a single f a i lu re .  

In t h e  44 m noninal diameter t a rge t  system 
shown i n  Figuxe 1, we have designed a new nech- 
an ica l  s t ruc tu re  while re ta in ing  the th in  cool- 
ant channel ccncept. We f e e l  the  f lat ,  c i rcu lar  
t a rge t  backing design o f fe r s  the following ad- 
vantages: (1) the  choice of mazerial and thick- 
ness i s  not l imited t o  t h a t  which i s  available 
ic tubing; ( 2 )  no forming of the t a r g e t  mater ia l  
i s  required; (3) both surfaces can be eas i ly  in- 
spected before and after bombardment; (4 )  t r ea t -  
ment of both surfaces i s  f a c i l i t a t e d  (p la t ing  
and roaghening of coolant s i d e ) ;  and, (5 )  the  
water channel wall1 on the  atmospheric s ide  cax be 
eas i ly  varied ( s t e e l  f o r  low r a t i o  of neutron 
sca t t e r ing  t o  strength, g lass  f o r  t a rge t  cooling 
s tudies ) .  
I s  shown i n  Figure 1, section (b) .  

Modification fo r  use with a g lass  back 

Instrument at ion 

Three eqe r imen ta l  parameters must be meas- 
ured with modest precision t o  provide a quanti- 
t a t i v e  evaluation of t a r g e t  performance. 
axe : 

They 

Ion Beam Power (9) i n  kW. Energy of the 
ions i n  the  beam i s  in fe r r ed  from terminal po- 
t e n t i a l ,  measured on a wl tme te r  ca l ibra ted  by 
threshold reactions.  Current of the  ion beam i s  
measured a t  the  ta rge t ,  guarded by a grounded 
aperture. A guard ring, biased - 500 Vdc with 
respect t o  ground, i s  used t o  suppress secondary 
electrons.  

2 
Ion Beam Bwer Density ( q / A )  i n  kW/cm . By 

defocusing the  beam on a s m a l l  aperture 
(A = 0.20 cmz or LOO cnz), a section of reason- 
ably uniform power dens i ty  i s  se lec ted  t o  f a l l  on 
the ta rge t .  In  the strictest sense, t h i s  meas- 
urement i s  an averaged value, and we should in-  
d ica te  t h a t  numbers obtained i n  t h i s  way are 
min i "  values only (Q/A > measured value). 

Target Surface Temperature An Ircon model 
3005 in f ra red  radiameter i s  used t o  probe ta rge t  
surface temperature. This system was  chosen f o r  
i t s  a b i l i t y  t o  probe s m a l l  surface areas without 
perturbing the  temperature distribuzion. Abso- 
l u t e  measurements of temperature a re  d i f f i c u l t ,  
as ca l ib ra t ion  of t he  unit depends on the  emis- 
s i v i t y  of the  surface, and t h i s  w i l l  change d.Je 
t o  carbon Zontamhation during bcmbardment. 
W s s i v i t y  ca l ibra t ion  i s  obtained a t  two known 
temperatures: first, at the  boi l ing  poin t  of 
water, and second, at a high temperatme produced 
by reducing the  water flow during beam thermal 
loading. In the second case, the  targe5 glows 
arrd the  ic f ra red  value can be compared t o  tha t  
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obtained from a ca l ibra ted  o p t i c a l  pyrometer. 

Remote v i sua l  observatior, of t a r g e t  face and 
coolant channel i s  provided by a closec' c i r c u i t  
t e l ev i s ion  system. Neutrons a re  monitored by a 
conventional long counter s i n i l a r  t o  the  type de- 
sc r ibed  by McTaggzst. 5 

Target Backing hra lua t ion  

Fa i lure  Mechanisms 

Some TJa l i t a t ive  observaticns of cooling 
system behavior near the  point of s t ruc tu ra l  fa i l -  
ure ind ica te  the  phenomena involved. Fa i lure  i s  
a sudden, almost threshold t m e  of effecz. V i s -  
ua l  observations of the  t a rge t  face and coclant 
ckannel ind ica te  a very strong temperahre  de- 
pendence on beam power input i n  the  region of r ed  
heat.  A t  t h i s  poin:, a notable sound l e v e l  i s  ob- 
served a t  the  t a rge t ,  ana a small increase of in- 
put power o r  pov7er c'ensity w i l l  r e s u l t  i n  punc- 
t u r e  of the  backing. Puncture appears t o  be a re- 
sult of melting through the backing, caused by 
severe boi l ing  of t he  coolant. 

Met d log raph ic  Studies 

A metallograghic study was  made on t a rge t  
blanks which were sectioned through the  zone 
where the beam impinged. The e f f ec t  of t h e  bean 
could be r ead i ly  assessed by comparing the micro- 
s t ruc tu re  both within and remote from the  heated 
zone. Grain growth, and deformation of t he  tar- 
ge t  backing due t o  coolant pressure forces, are 
v i s ib l e .  Figure 2a i l l u s t r a t e s  grain boundary 
erosion produced on a t a rge t  blank formed by 
f l a t t e n i n g  of commercial copper tubing. It i s  
believed t h a t  rapid f a i l u r e  o f  t h i s  t a r g e t  would 
have resu l ted  from the  propagation through the  
sample of the  grain boundery cracks ahead of 
t he  eroded f i ssures .  This type of f a i l u r e  ap- 
pears t o  be caused by the  reaction of hydrogen 
with the  CUQO p a r t i c l e s  t o  form steam bubbles i n  
the  grain boundaries. Fa i lure  i s  accelerated by 
the  s t r e s s  multiplication a t  the  gra in  bomdary 
notches. Even a t  modest power densit ies,  s m a l l  
water leaks due t o  grain boundary damage may de- 
velop. Clearly oxygen bearing copper shculd be 
avoided. 

A p a r t i a l l y  melted O.F.H.C. copper ta rge t  i s  
shown i n  Figure 2b. 
i n  s i t u  by the  high surface zensional forces, and 
subsequently so l id i f i ed  forming l a rge  cspper 
grains.  The curved s t r i a t i o n s  suggest successive 
pos i t ions  of t he  l iqu id-so l id  in t e r f ace  during 
so l id i f i ca t ion .  Appearaace of t he  s t r i a t i o n s  on 
the  micrograph may be due t o  the  grec ip i ta t ion  of 
hydrogen gas a t  the  moving interface.  There i s  
no evidence of grain boundary cracking although 
it  i s  c l ea r  t h a t  the  i n i t i a l  material  contained 
impurit ies which were removed during the  melting. 
In s p i t e  3f the  melting, such a blank appears t o  
be resuable. 

Liquid copper was re ta ined  

A t a rge t  puncture induced by reducing cocl- 
ant flow under severe beam loading, i s  shown i n  
Figure 2c. 

Thermal Analysis 

Simple heat conduction arguments can be used 
t o  show t h a t  t he  temperature difference from tar- 
ge t  sur face  t o  water channel w a l l  w i l l  be of the  
order of 1 0 0 C a .  
n e l t i n g  point, t he  driving pc ten t i a l  f o r  bo i l ing  
w i l l  be 80OC" (Le . ,  the chamel  wall teqera-  
t u r e  l e s s  the  sa tura t ion  temperature or" water at 
the  channel pressure) .  
l e v e l s  t he re  will be an extreme boi l ing  condition. 

With the  t a r g e t  face  a t  the 

A t  these temperature 

%ne general  problem of heat t r ans fe r  t o  a 

Three regimes 
l i q u i d  by forced convection w'th boi l ing  has been 
considered in  d e t a i l  by Tong.i: 
of bo i l i ng  a re  outlb-ed: 

a )  nucleate boi l ing  - generation o f  small 
vapor bubbles at the  heated wall  t h a t  are swept 
away by shear forces of the  flow before they can 
coalesce. 

b )  f i lm  boi l ing  - creation of a stable,  csn- 
tinuous f i lm  of vapor t h a t  insu la tes  t he  w a l l  
surface from the  flow stream. 

c )  t r ans i t i on  region - regions of the w a l l  
o s c i l l a t e  from nucleate t o  f i b -  bo i l ing  leading 
$0 wall temperature var ia t ions  between broad 
l imi t s .  

These three  regions can be recognized on the  
p l o t  of t a r g e t  surface temperature as a function 
c f  beam power, shown i n  Figure 3. 
duced t h e  volume flow of coolant 50 enable the  
e n t i r e  bo i l ing  region t o  be examined at modest 
power b p u t s ) .  On t he  portion of t he  b3i l ing  
curve marked (a),  surface tem2erature da ta  can be 
cor re la ted  as a l i nea r  function of input power 
f o r  a f ixed  area. TAis re la t ionship  can then be 
characterized by two quant i t ies :  (aT,/aq), and 
Tm. T i s  the  t a r g e t  backing surface tempera- 
tu re ,  an8 TDTTB i s  defined as the  temperature at 
departure f r o m  nucleate boi l ing  ( a r b i t r a r i l y  
chosen as the  point where the  razdom var ia t ion  in  
T, i s  10% of i t s  v d u e ) .  

l eve l s  suck- t h a t  Q~JB i s  near t he  melting point 
of t he  backing, then osc i l l a t ions  of the  t rans-  
i t i o n  region may be su f f i c i en t  t o  melt the  t a rge t  
suddenly f o r  l i t t l e  o r  no increase i n  power input.  
Alternately, i f  TDNB i s  considerably l e s s  than 
T..= melting, t he  coolant w i l l  s t z b i l i z e  in  the 
film boi l ing  regime. For t h i s  case, (aTs/aq) 
FILM >> (aTs/aq) J!i'UCLEATE. Thus the  rapid in- 
crease ir, surface temperature f o r  a small in- 
crease i n  power o r  power density could drive the  
backing t o  melting f a i l u r e  q s i t e  rapidly. 

(:<ere ve re- 

I f  a t a rge t  system i s  operating a t  p w e r  

The t r ans i t i on  from nucleate t o  film boi l -  
ing  can be v i sua l ly  observed througn the g lass  
water channel backing. This provides s t r ik ing  
confirmation of our analysis,  again a t  reduced 
flow as f o r  Figure 3. During region (a ) ,  s m a l l  
bubbles are formed and swept away by the  coolant 
flow. i n  the  t r ans i t i on  region (e), l a rge  bub- 
b les  cover the  surface f o r  a few seconds befcre 
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being swept i n to  the stream. Film boi l ing  in  re- 
gion (b)  covers the  w a l l  witn a s t ab le  f i b  as 
predicted. A s  t he  coolant ve loc i ty  i s  increased, 
the turbulence and speed of the flow complicate 
the v isua l  observations. A high speed s to2  ac- 
:ion canera would be necessary t o  adequately ex- 
amine t h i s  region. 

Given these in te rpre ta t ions  of t a rge t  axd 
coclant behavior, a cor.sistent aFproach t o  tar- 
get evaluation can now be f o m d a t e d .  

Performance Results 

A correlatior:  c f  t a rge t  surface temperature 
as a l i nea r  function of beam input power i s  
shown in  Figure 4, fo r  A = 1.0 em2. Temperature 
da ta  points were obtained at d i f f e ren t  beam en- 
ergies and foca l  conditions t o  iden t i fy  possible 
e r rors  t ha t  could be introduced by inadequate de- 
focusing. Here the glass back was used and the 
coolant pressure dro w a s  a d j u t e d  t o  give a 

perature da ta  from Figure 3 ir. tne  region 05 nu- 
c lea te  boi l ing  has been included. A slope o f  
aT//aq = 185Co/kW f i t s  the  data, with temperature 
l imi t s  c f  +20C0 ecclosing a l l  da ta  points. Above 
t a rge t  powers 2 2.5kW, heating of t he  aperture 
caused inf ra red  interference t h a t  complicated the 
temperature measurements. Visual observations of 
:he t a rge t  face ind ica te  the  absence of glow at 
1.30 mA and 2.6 MeV, and subsequent inspection of 
t h i s  t a rge t  reveals t h a t  no melting o r  damage had 
occurred ,as e q e c  t ed. 

In Figure 5, a similar cor re la t ion  i s  s h a 3  
f o r  the  case A = 0.2 em2. 
294Co/kK, with a spreac of +20C” again enclosing 
the  data poixts. 
ference l i m i t  t h i s  data t o  1.25 kW(6.25 kW/cm2). 
Visual observations were uti.lized t o  determine 
t h a t  glow does not occm at our m a x i ”  trans- 
mission point, 8 2 w  md 2.6 MeV (10.6 kW/cm2). 

Some qual i ta t ive  observations were made a t  
higher t o t a l  powers by removing the ,  small aper- 
zure and passing the  beam through the  38 nun di- 
ameter guard aperture. !Eiis da ta  was taken on ax 
e a r l i e r  version of the  design shown i n  Figure 1, 
which had a d i f f e ren t  coolant flow configuration. 
We obtained: 

volm-e flow = 150 cm 3 /see. In addition, the tem- 

We f i n d  t h a t  aT/aq = 

Problems with in f r a red  in te r -  

Energy Current Observakions 

1. 1.5 bfev 3.4 m~ no glow or damage f o r  
a l l  foca l  conditions. 

2. 2.0 3.4 defoc.ised, no glow 

3. 2.5 1 . 5  focused, intense glow. 

LiF Neutron Texgets 

2.7 focused, d u l l  red  glow. 

LiF t a rge t s ,  ranging i n  thickness from 100 
t o  1000 w/cm2, were vacuum evaporated on gold 
p la ted  t a r g e t  backings, formed from a f l a t t ened  
copper tube. During the  pas t  year, these  t a rge t s  
have beer, used as th i ck  t a r g e t  thresk-old ca l ibra-  
t o r s  and as neutron sources fo r  s o l i d  s t a t e  dam- 
age experiments. Under protor. beams of 50C pA at 

2.25 MeV, t a rge t s  about 200 IJ.@;/cm2 th ick  r e t a in  
the same spec i f ic  neutron output f o r  a t  l e a s t  
eigh; hours of continuous operation (i.e.,  4 mA- 
hours exposure). A t  these power levels,  a dras- 
t i c  reduction of the  volume flow t o  the  poin t  
where the  coolant b o i l s  i n  f r e e  convection had no 
apparent e f f e c t  on the  neutron producing l i f e t i n e  
of the ta rge t .  

Qualitative indications of neutron l i f e t ime  
were obtained eaxly i n  the  study with hydrogen ion 
beam of 1.5 mA a t  2.25 XeV. h’hen these beams 
were focused t o  spots estimated t o  be from 5 TO 10 
mm diameter, h a l f l i f e  fo r  neI&ron production rang- 
ed from 1/2 t o  3 hours. 
the spot over a 2 cm t a r g e t  diameter, useful l i f e -  
times were increased t o  about 10 hours. We expect 
t o  obtair. quant i ta t ive  information on neutron 
l i fe t imes  using proton 
s i t y  range i n  the near future.  

By magnetically s teer ing  

beams i n  t h i s  power den- 

Discussion 

For a flowing coolant with nucleate boiling, 
heat t r a m f e r  by forced convection i s  thought t o  
be negligible ( re f .  ( 6 ) ,  pg. 117-118). 3ence 
there  should be l i t t l e  dependence on volune flow 
ra te .  Exper imnta l  agreement with t h i s  predictior. 
i s  demonstrated by the common temperature correla- 
t i on  fo r  two qui te  d i f f e ren t  flow r a t e s  as shown 
i n  Figure 4. Increasing the flow by a f ac to r  of 
twentjr does not a f fec t  (aTs/aq), but sugpresses 
the  t r ans i t i on  t o  f i lm boiling. 

If the  cor re la t ion  i s  extrapolated t o  a sm- 
face  temperature eqLial t o  the  melting point of Cu, 
then 5.3 kW would be the  maximum power t h a t  t h i s  
t a r g e t  could hold on a 1.0 cm2 area. 
e x t r a p l a t i o n  of (aTs/aq) f o r  the  A = 0.2 cm2 case 
gives 3.34 kW (i.e.,  16.7 kW/crc2) as the  m a x i ”  
power point, subject t o  the  requirement t h a t  TDm 
can be suppressed t o  temperatures above melting 
by increasing the flow. 

A s i n i l a r  

Calculations have been made f o r  t he  f la t tened  
ccpper tube t a r g e t  t h a t  p red ic t  a power capabi l i ty  

shape independent, multilayer of 7 kW/cm2, 
plane w a l l  model. Although our r e s u l t s  indi-  
ca t e  a sssong shape dependerxe when A < 1 cm2, 
convergence t o  the  one dimensional r e s u l t  shoul2 
be qui te  rap id  for beam diameter t o  t a r g e t  thick- 
ness r a t i o s  > 10. Two dimensional conduction i n  
the  copper i s  s ign i f i can t  f o r  t h in  backings be- 
cause t h e  thermal res i s tance  of t he  boilir-g l i qu id  
in te r face  dominates the  s e r i e s  heat flow c i r cu i t .  
Extrapolations of our da t a  on backings 2 1 nnn 
th ick  ind ica te  t h a t  t h e  one dimensional c d c u l a -  
t i o n  overestimates the  power capabi l i ty  f o r  1 cm2 
areas, and underestimates f o r  C . 2  cm2. Shape de- 
pendent ca lcu la t ions  could be expected t o  y ie ld  
the  same r e s u l t  as our extrapolations i f  the  w a l l  
t o  water f i l m  coef f ic ien t  i s  determined f o r  nu- 
c l ea t e  bo i l ing  coolant cmcStions, and i f  the  
t r ans i t i on  f r o m  nucleate t o  f i l m  ba i l i ng  can be 
suppressed. 

Lsin4 3 

Experiments a re  now i n  p o g r e s s  a t  t h i s  lab- 
oratory t o  determine the  exact forrx of t ne  shape 
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dependence f o r  copper, tungsten, and tantalum 
backings. Additionel work a t  high powers i s  be- 
ing  d i rec ted  at inves t iga t ion  the  suppression of 
TDNr These r e s u l t s  s h a l l  be reporte6 elsewhere. 

In conclusion, we have f o w d  a l i n e a r  cor- 
r e l a t ion  such t h a t  two paraneters a re  required 
t o  specify the power d iss ipa t ing  capabi l i ty  of a 
f ixed  a rea  of our t a r g e t  backing: (aTs/aq),r, and 
TDNW 
necessary, they do not mater ia l ly  e f f ec t  t he  
value o f  (aTs/aq) i n  nucleate boiling. With 
present techniques, 2 kW ion beams can be focus- 
ed t o  a 5 mm diameter spot on t a rge t  with im- 
punity. A s  beam s i z e  i s  increased, t a r g e t  power 
capabili5y does not s c a l e  d i r e c t l y  with area. 
For beams o f  1 cm2 area, these t a r g e t s  may well 
have an e f f ec t ive  limitation of (5 kkr on maximum 
useable ion beam power. Finally,  sudden fail- 
ures of pure, flaw f r e e  t a rge t  backings can be 
avoided by l i m i t i s g  t a rge t  temperatures below 
;he nucleate t o  film boi l ing  t r a n s i t i m  o f  The 
coclar,t, and below the  melking point of tne  back- 
ing  materials.  

Although high coolen; flow rates nap be 
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Figure 1. High Power Target 3esign 
a./ P a r t i a l  disassembly, s t e e l  back. 
b./ Glass back. 
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100 I= 

Figure 2. Transverse Cross Sections of Cu Target 
Backings Showing Modes of Failure.  
a./ Fissures i n  impure copper. 
b./ P a r t i a l  melting in  OFHC copper. 
c./ Puncture by melting. 
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Figure 4. Correlation of t a rge t  surface temper- 
a tu re  da ta  as a l inea r  function of 
t a rge t  input power fo r  1.0 square 
centimeter beam area. 
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Figure 3. Boiling Regimes. Shown by t a rge t  sur- 
face temperature as  a function of 
t a rge t  input power at reduced coolant 
flow ra t e .  
a./ Nucleate boiling. 
b./ Film boiling. 
c./ Transit ion from nucleate t o  f i lm  

boiling. 
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Figure 5 .  Correlation of t a r g e t  surface temper- 
a ture  da ta  as a l i n e a r  function of 
t a rge t  input power f o r  0.2 square 
centimeter beam area. 
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