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The beam c r i t e r i a  for  the SLAC beam switch- 
yard and the effect  of these c r i t e r i a  upon align- 
ment tolerances and placement of components in 
the switchpwd are  discussed. The methods de- 
veloped in the shop and in the f i e ld  for  meeting 
the stringent aligmnent tolerances are a l so  
covered. 

I n t r  d u c t  ion 

The ab i l i t y  of a beam transport system t o  
perform according t o  the designer's specifications 
depends on how w e l l  the instal la t ion meets the 
aligmnent tolerances. 
beam transport system is described in  th i s  paper 
with particular reference t o  the SLAC beam switch- 
yard. 

The alignment of a large 

The purpose of the beam switchyard i s  t o  de- 
l i ve r  the electron beam from the Stanford two-mile 
l inear  accelerator t o  the experimental areas. The 
switchyard consists of an elaborate system of 
bending magnets, magnetic quadrupole lenses, pro- 
tect ion devices and diagnostic instruments. These 
elements are primarily divided in to  two transport 
systems leading t o  the two experimental areas. 
The two systems, labelled A and B fo r  the i r  re- 
spective experbental  areas? have a common origin 
in the beam l ine from the accelerator. A list of 
the most pertinent design parmeters is contained 
in Table I. 
marily those of meeting the requirements s e t  
for th  in  Table I. 

The problems of alignment are pr i -  

me switchyard layout i s  shown in Figure 1. 
The beem size and position is  defined by co l l i -  
mators C-0 and C-1. 
beam by O.5O toward either the A or  the B system. 
The basic optics of both systems is  shown i n  Fig- 
ure 2. 
Smage of the beam on the plane of syornetry where 
the s l i t  defines the resolution of the beam. The 
bending magnets-1 disperses the beam for energy 
resolution at  the slit. The sylmnetry quadrupole 
Q-3 reccmbines the different mcauenta so tha t  a f t e r  
passing through the second set of bending magnets 
N-2, the beam w i l l  be achromatic. 
quadrupole Q-3 has l i t t l e  e f fec t  on the ver t ical  
divergence of the beam because the vertical s ize  
of the beam is quite small there. The quadrupole 
doublet (Q-4 9-5) can be used t o  produce a nearly 
paral le l  beam or t o  get a small spot on some 
target. 

A pulse magnet bends the 

The doublet (Q-1 $-2) forms a double 

The symmetry 

Alignment Requirements 

Each basic transport configuration in the 
switchyard l i e s  on a different plane. 
beam lines are required t o  be horizontal, refer- 
enced t o  local  gravity, i n  the experimental areas. 
The accelerator axis points downward by 4.74 
milliradians t o  the local gravity vector at the 
beginning of the switchyard. 
the A and B systems and the o m o n  accelerator 
l ine  define the two planes i n  which the A and B 
system beams l i e .  Tnese t i l t e d  beam planes are 
sham in Figure 3. A major par t  of the alignment 

The exi t  
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e f fo r t  i s  targeting each component so tha t  it can 
be aligned in i t s  respective t i l t e d  plane. 

The tolerances reported in Reference 1 were 
calculated using the e r r o r  analysis features of 
TRANSPORT3, a computer program written especially 
with t h i s  problem in mind. 
most l i m i t  placement tolerances are  energy reso- 
lution (see Table I) and the  apertures of switch- 
yard elements downbeam from the element being 
aligned. 

Two c r i t e r i a  which 

The most r e s t r i c t ive  t ranslat ional  alignment 
tolerance i s  ?: 0.025 cm f o r  the horizontal posi- 
t ion of e i ther  element of quadrupole doublet 
(Q-1 Q-2) .  This tolerance i s  based on the re- 
quirement that the beam must be centered a t  (Q-1 
Q-2) or e lse  the doublet w i l l  bend the beam and 
af fec t  the accuracy of the energy nieasurement. 

The most r e s t r i c t ive  rotat ional  alignment 
tolerance i s  * 0.1mil l i radians for  rotation 
about the beam l ine  axis fo r  magnets i n  the f i r s t  
bending group, M-1. This rotat ional  tolerance i s  
necessary, because the ve r t i ca l  component of the 
bend must be small enough t o  allow the beam pas- 
sage through the magnet aperture of the second 
bending group, M-2 and necessarily, the beam m u s t  
pass within & 0.06 cm of the v e r t i c a l  center of 
the syametry quadrupole, 6-3. 

Although most of the other tolerances a re  
numerically larger, some of these are just  as 
d i f f icu l t  t o  achieve. For example, the switch- 
yard is  about 300 meters long and some longi- 
tudinal tolerances are  0.4 cm, or about 1 part  in 
105. 

Laser Reference Line 

An extenRion of the accelerator laser  align- 
ment system4JS provides a reference l ine through- 
out the f i rs t  half of the switchyard. The fmc-  
t ion  of t h i s  extension is t o  establish alignment 
targets  whose position i s  considered known t o  
within f 0.05 cm f o r  a l l  the transverse positions. 
These well located target  positions are  then used 
t o  position the components i n  the beam lines. 
Figure 4 shows a laser  alignment target  stand and 
a portion of the vacuum pipe through which the 
laser  beam travels. 

The extension has a separate laser  located 
at the end of a 25 cm diameter vacuum pipe which 
extends 250 meters from the end of the acceler- 
ator. Twenty alignment positions are  along t h i s  
extension, each of which has a retractable laser  
target  whose position can be determined by an 
operator at the beam injection end of the accel- 
erator. 
i n  the 60 cm diameter pipe which i s  used for  the 
accelerator system. 
tangential t o  the bottom of the accelerator pipe 
a t  the coupling between pipes. 
quired because of the size of the collimdtors 
(see Reference 6 )  which prevent use of a 60 cm 
l igh t  pipe throughout the switchyard. 
the reference line i s  centered in the pipe a t  the 

The targets are  similar t o  the targets  

The 25 cm switchyard pipe is  

The offset i s  re- 

However, 

beam injection end, 3000 meters upstream, so there 
ex is t s  a slight slope t o  be compensated for  i n  
measurements. 

Earth Curvature Effects 

The ear th  curvature at SLAC, 1.511 x lom7 
radians/meter, was determined through the use of 
astrogeodetic methods by the U. S. Coast and Geo- 
detic Survey. Curvature, i f  disregarded i n  sur- 
veys over large distances, can resu l t  i n  s ignif i -  
cant errors  in the placement of components having 
small alignment tolerances. The possible error  
in  elevation from the beginning of the switchyard 
t o  the end stations i s  5 mm, due t o  a change in 
local  gravity reference. 

Two machine programs6 were written which com- 
pute the pitch and roll angles made by any com- 
ponent with the local gravity vector a t  tha t  com- 
ponent's p r t i c u l a r  location. In addition, the 
programs canpute the necessary tape distances re- 
quired by alignment crews t o  position switchyard 
elements. Yhe r i e i a  crews are supplied with 
alignment values which correct for t he i r  using 
local  gravity as reference and for  sighting from a 
plane above the beam component planes. 

Target in$ 

A l l  instruments and magnets i n  the beam 
switchyard are  processed through a special opti- 
ca l  tooling shop before instal la t ion.  
technicians mount tooling ba l l s  and targets  on the 
exterior of the component t o  allow accurate place- 
ment of that component during instal la t ion.  Fig- 
ure 5 shows the location of the different targets, 
tooling balls and mirror stage assembly placed on 
a quadrupole magnet. The center of the mirror in 
the mirror stage is scribed with a target. 
f i e ld  bullseye target  and the center of the mirror 
are  used by the f i e l d  alignment crew t o  point the 
component i n  the correct direction. 
a t t i tude is  obtained by u t i l i z ing  the mirror stage. 
Elevation of the component is fixed with the tool- 
ing b a l l  mounted on the mirror stage assembly. 

The shop 

The 

The proper 

In  the shop, the f i r s t  s tep is t o  locate the 
mechanical center of the component by using spe- 
c i a l  j igs  designed for  t h i s  purpose. The tooling 
ba l l s  and targets f o r  use i n  the f i e ld  are  then 
placed a t  specified positions relat ive t o  th i s  
mechanical center. 

N e x t ,  alignment angles are turned into the 
components by use of a clinometer having an accu- 
racy of two seconds. 
which a component must be rotated about i t s  X and 
Z axes from a level  position t o  be properly t i l t e d  
for instal la t ion i n  the switchyard. The computer 
programs mentioned above were used t o  compute the 
values of the alignment angles for tk beam switch 
yard components. The angles turned are  checked by 
measuring the before and a f t e r  t i l t e d  positions of 
four tooling ba l l s  placed upon each corner of the 
components which allows computation of the turned 
sngles , 

These are the angles,by 
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Gnce the mgles are turned, a m i r r o r  stage 
assembly i s  secured t o  the component at a speci- 
f ied location from the mechanical center. A 
mirror stage assenibly i s  shown in Figure 5. It 
i s  placed by use of an overhead j i g  t r ans i t  
positioned from tooling bars in the laboratory. 
After the mirror stage assenibly i s  bolted into 
place, the mirror in the assembly is s e t  level by 
auto-collimation from the overhead t r ans i t  and 
locked i n  place. The correct tilt of the com- 
ponent i s  guaranteed in the f i e ld  by auto-colli- 
mating on the mirror with a t r ans i t  through holes 
in the shielding blocks on the second level. The 
tilt i s  independent of curvature effects as local 
gravity reference i s  used in the shop and in  the 
f i e ld  t o  level the mirrors. 

Placement of Campments 

The elements were positioned in the f i e ld  by 
placing them i n  the proper position relative t o  
wires stretched between bending magnet group 
vertices. 
the laser l i ne  as the basic reference line. Fig- 
ure 6 shows a plan view of the stretched wires i n  
the beam switchyard area. 

These vertices were established u s i n g  

These wires are stretched between stands 
placed on the shielding blocks, which are  about 
three meters above the beam pipes. Figure 7 
shows the relative positions of the f i e ld  align- 
ment crews and the beam switchyard elements. 
Optical i n s t m e n t s ,  j i g  t ransi ts ,  and sight 
levels are used t o  place the components properly 
relative t o  the stretched wires, 

The tooling bal ls  placed on the components 
in  the optical  tooling shop were ei ther  placed on 
the component in such a manner that they would be 
under the stretched w i r e  or offset  a known dis- 
tance fromthe stretched wire. This it3 i l l u s -  
trated in Figure 8. Invar tapes were then used 
t o  position components relative t o  magnetic ver- 
tex points by measuring t o  the mirror center on 
the components. 

Tape Bench Faci l i ty  

The distances along the stretched wires re- 
quired f o r  the placement of components were 
measured using tapes scribed at the tape bench 
f a c i l i t y  which is located in one of the accelera- 
t o r  tunnel accessways. 
Figure 9. The tapes are scribed i n  t h e i r  f i e l d  
positions, i.e., the horizontal correction for  
catemry sag i s  compensated f o r  by scribing the 
tape i n  thesaggedcondition. The f a c i l i t y  uses a 
master tape, which i s  a s t ee l  tape calibrated and 
cer t i f ied by the National Bureau of Standards. 

The f a c i l i t y  is shown i n  

The beam switchyard f i e ld  tapes are invar. 
Invar w a s  chosen primarily because of i t s  law 

thermal expansion characteristics. The s t ab i l l t y  
of invar under load, Le., tendency t o  creep, was 
investigated and was found that under l ight  ten- 
s i l e  loads (10 pounds) the average s t ress  level 
was  2000 lbf/in2 which did not cause any measur- 
able creep even when the tape was under load 
continuously fo r  10 days with an average ambient 
temperature of 21.1' C. I n  the field,  the invar 
tape i s  supported in  the same manner as on the 
tape bench. 

me techniques used allow scribing accuracy 
t o  within .076 m and the s t ab i l i t y  of the tapes 
a f t e r  f i e l d  use has been excellent. After use 
the tapes show deviations of less  than .076 DDU 
from the originally scr5bed length. 
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Fig. 1. Component layout of the beam switchyard for the two-mile linear accelerator. 

Fig. 2. Schematic diagram of a typical achromatic 
bending system. 

Fig. 3. Tilted planes of A and B Beams in the beam 
switchyard. 

Fig. 4. Alignment equipment on laser target stand. 
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FIELO TOOLING 

Fig. 5. Alignment equipment on a quadrupole magnet. 

Fig. 7. Alignment of beam switchyard components 
from second level shielding blocks. 
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Fig. 6. Stretched wire layout for alignment of beam 
switchyard area. 
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Fig. 8. Targeting on beam switchyard components. 

Fig. 9. Tape Bench Facility. 
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