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3itroduction 
1 The microzron, f i rs t  proposed by Veksler 

i n  1944, i s  the only cycl ical  electron accel- 
erator i n  which the magnetic ft-eld remains con- 
stant and which i s  therefore not inherently a 
pulsea machine. However, i n  order t o  reduce 
the overall  s ize  of the accelerator, decrease 
the nmber of orbi ts  required t o  a t t a in  a given 
output energy, and f a c i l i t a t e  satisfying the 
resonance conditions, a large energy gain per 
turn i s  highly desirable. 
b u i l t  and operatecl t o  date2 have i n  f a c t  been 
pulsed. In this  way bigh RF f i e lds  were ob- 
tained with available tubes and a t  the same 
time problems of power dissipation and break- 
down i n  the cavity were minimized. 
other hand, the possibi l i ty  of CW operation i s  
of considerable in t e re s t  since an accelerator 
r iva l l i ng  a Van de Graaff i n  energy resolution 
while giving more output energy with s m l l e r  
s ize  and lower cost  can thus be produced. Such 
machin s have been 
e t  
attention i n  this country. Nevertheless, t he i r  
xsefulness i n  high-resolction, count-rate- 
l imited experiments would seem t o  j u s t i f y  
further investigation. The microtron design 
presented here permits obtaining a 15 MeV beam 
with lOC$ duty cycle. 

Hence most microtrons 

On the 

considered by Kapitza 
but have received relat ively l i t t l e  -- 

We approach t h i s  design by f irst  e s t i -  
mating how large a peak e l e c t r i c  f i e l d  can be 
sustained i n  the cavity under CW E? excitation. 
A general r u l e  of thumb for  t i s  value i s  107 

of the 7 microtron indicates that  f i e l d s  of 
1.5 x 10 volts/meter axe qGite feas5bI.e. For 
the present work w e  have chosen 1.25 x 107 
volts/meter as a comprcmise t h a t  can be achieved 
i n  practice and a t  the same time allows a reason- 
able energy gain per turn. 
places Szringent requirements on the vacuum tha t  
must be attained, the treatment of the in t e rna l  
cavity surfaces, and the cavity cooling system, 
but these are not beyond pract ical  real izat ion.  
O u r  ca lcda t ions  show that  with the e l e c t r i c  
f i e l d  amplitude j u s t  established, the power 
dissipated i n  our cavity wiy be 68 kW or, with 
a cavity w a l l  area of 340 cm , 200 watts/cm2. 
These Val es are based on a r e s i s t i v i t y  of 
2.3 x 
for a wall  temperature of 1000 C. Kapitza3 has 
fcuna that  fo r  a similar cavity operating a t  an 
RF wavelength A = 20 cm, an amplitude of 
1.3 x lo7 volts/meter can be maintained with 
a dissipated power of 90 kW necessitating 

our chosen wavelength of pproximately 15 cm 
this becomes 265 watts/cm . 

volts/meter, although Kapitza ti. i n  his disc.assion 

This specification 

ohm-meters fo r  copper, which allows 

the removal of 150 watts/cm 5 . When scaled t o  

I n  any case, since h 

as mch as 500 watts/cm2 can be dissipated by 
proper cooling arrangements, no d i f f i cu l ty  
should be experienced on t M s  score. The 
required driving power is  currently obtainable 
from a number of tubes of which the Varian 
type VA-858 CW klystron amplifier i s  a good 
exanple. Nevertheless, res t r iczing the elec- 
t r i c  f i e l d  amplitude t o  l e s s  than 1.5 x io7 
vclts/meter i s  a severe l imitation. In order 
t o  get a reasor.able energy gain per turn it i s  
then necessary t o  make the cavity considerably 
thicker than i n  pulsed machines, and even with 
the dinension pa ra l l e l  t o  the beam raised t o  
as much as 4 cm this energy gain i s  so small 
that  the DC magnetic f i e l d  must be l e s s  than 
600 gauss. Thus for  a given output energy the 
f i n a l  o rb i t  diameter becomes relat ively large. 
The lower energy gain also magnifies the 
problem of gett ing an electron up t o  an 
ecergy where i t s  velocity may be considered 
constant and equal t o  the velocity of l i gh t  
wk-iie s t i l l  satisfying the rescnance conditions. 
These d i f f i cu l t i e s  can be overcome by adopt'n 
the so-called "racetrack" microtron destgn, ' j 5  

but direction-focusing problems then ar ise  i n  
the s t ra ight  sections. If no niore than 15 MeV 
i s  reqcired, a magnet diameter of about 2 
meters i s  adequate and does not resul t  ir. an 
impossibly large s t ruc twe .  
elected t o  consiaer a conventional microtron 
and investigate whether an injection method 
can be found that  w i l l  give satisfactory re-  
s d t s  with the limited 3 F  f i e l d  imposed by CW 
operation. 

Ve have therefore 

The High-Energy Orbits 

Our design procedure begins with the 
selection of  the phase angle and energy gain 
per turn fo r  the resonant electron, i . e . ,  the 
electron which, while traveling with a con- 
s t an t  velocity differ ing negligibly from c, 
passes through the middle of the cavity with 
the same phase angle ar re la t ive t o  the RF 
f i e l d  and receives the same energy increase 
V each -ime mound. The usual phase s t a b i l i t y  
d$agrams& show tha t  values of a near 20° offer 
a good compromise between having a large phase 
s table  region and gett ing as much energy gain 
per turn as possible f o r  a given RF amplitude. 
Figure 1 shows such plots  fo r  C+ = 19.2', 
which was found t o  be optimum i n  the present 
design. Note t h a t  i n  t h i s  work the e l ec t r i c  
f i e l d  is taken as a cosine function of time. 
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Following the practice of Kapitza, Bykov, 
and Melekhin7 and also of B r a m e n  and Froelich,' 
we have assumed a r igh t  c i rcular  cyl indrical  
cavity of radius a = 2.405 h/2rr and thickness d 
operating i n  the TMolo mode. 
i n  electron vol ts  by 

Vr i s  then given 

where E 
f i e l d  a? the cavity center. 
a family of plots  of equation (1)  from which 
V may be read as a f m c t i o n  of fo r  various 
drand f o r  the values Eo = 1.25 x lo7 volts/meter 

19.2' already established. Choosing 
:dd%eLnes the DC magnetic f ie ld  Bo f o r  a 
particularr RF wavelength through the relat ion 

0 c h  

is  the amplitude of the e l e c t r i c  
Figure 2 shows 

2* vr 
( 2 )  B =- 

which expresses the condition tha t  the resonant 
electron s l i p  i n  phase by one RF period i n  
successive orbi ts .  
i s  not allowed t o  become so great as t o  b t e r -  
f e re  with the f i r s t  orbit ,  values of more than 
about 400 KeV cannot be expected for  V . With 
A = 15 cm the corresponding magnetic f:eld i s  
about 560 gauss, whence the f i n a l  orbi t  radius 
becomes a l i t t l e  over 90 cm. The s ize  of the 
macbine i s  thus pret ty  well fixed, as i s  the 
necessity for  avoiding any disturbawe i n  B 
which might be an unduly large percentage 09 
the re la t ively small value j u s t  established. 
We have accordingly s e t  up as a canstraint  on 
our design the reqJirement t ha t  the DC magnetic 
f i e l d  sha l l  not be less than 500 gauss, but 
beyond th i s ,  d, A, ar, and hence Vr and the 
actual  value of Bo must be chosen so that  
electrons come out of the ear ly  orbi ts  i n  the 
proper phase ana also sa t i s fy  the other reso- 
nance condition 

I f  the cavity thickness 

Vo + Vinj + AVl + AV2 = 4Vr 

€!ere V i s  the electron r e s t  energy, V i s  
the kiget ic  energy a f t e r  the passage &&gh 
the cavity immediately following injection from 
the cathode, and AVl m d  AV a re  the energy 
gains obtained i n  the cavity traversals coming 
a t  the ends of the f i r s t  two f u l l  orbi ts  (see 
Figure 3) .  
ment t ha t  the third orbi t  take an integral  
number of RF periods t o  complete. Note that  
AV i s  often negligibly different from V , i n  
which case (3) reduces t o  Vo + V . + A;f = 3Vr. 
In any event we assume that fo r  & subsequent 
passages the electron velocity is suff ic ient ly  
close t o  c so t h a t  the energy gain corresponding 
50 the resonant phase i s  V . For the present 
work we choose Vr t o  be 396 KeV. 

2 

Equation (3)  expresses the require- 

2 

Injection and Low Energy Orbits 

Introduction 

O f  the various methods that have been 
proposed f o r  inject ing electrons in to  a micro- 
t ron from a thermionic cathode, we have he e 

i n  which the cathode 
t e r i o r  cavity wal l  a t  an appropriate distance 
from the ax ia l  center l i n e  and directs an 
electron beam in to  the cavity as shown i n  
Figure 3.  
location, the direct ion and energy of the 
injected beam, and the RF frequency must be 
found that  w i l l  allow electrons entering i n  
at least some range of phase angles t o  be 
captured in to  s table  orbi ts .  To do t h i s  the 
r e l a t i v i s t i c  equations of motion must be 
solved both i n  the DC magnetic f i e l d  B 
i n  the combination of B and the RF e lgc t r i c  
and magnetic f i e l d s  ass8ciated with the 
TM mode i n  the cavity. Xeferred t o  the 
co%8inate system i l l u s t r a t ed  in  Figure 3 
(with the z-axis perpendicularly up out of 
the paper) the f i e l d s  in  the cavity at the 
orbit plane are 

chosen the one suggested by Kapitza et  al. T 
i s  placed on the E- 

A combination of the electron gun 

and 

(4 )  
+. 
E = Eo Jo (2.405 :) cos (ut  + cp )  

and 
+ 
B = %[-Bo - 2  Eo J1(2.bj  f )  sin(rut + c p ) ]  

( 5  1 
where J and J1 are  the zeroth and f i rs t  order 
Bessel h n c t i o n  of the argument 2.405 y/a. 
The equations of motion were reduced t o  four 
f i rs t -order  differen5ial  equations and solved 
on Boston University's I B M  model 1620 d i g i t a l  
computer fo r  a wide range of i n i t i a l  conditions. 
The procedure was as follows: F i r s t  was 
selected determining B 
chosen V = 390 KeV. %en a and d were 
adjustedrso tha t  Vr would inrfact  have th i s  
value while at the same time the f i r s t  orbi t  
would miss the cavity. Next the i n i t i a l  
conditions (entering beam energy, angle, and 
ghase) were adjusted i n  an attempt to  get the 
?roper energy and phase fo r  electrons i n  the 
f i rs t  orbi t .  The main problem here was not 
one of obtaining suff ic ient  energy fo r  these 
electrons but lay ,  rather,  i n  the f a c t  that  
they would leave the cavity "too late",  i .e. ,  
a t  a ghase angle re la t ive t o  the RF f i e l d  too 
large t o  permit t he i r  reentering the cavity 
i n  the phase necessary fo r  proper acceleration 
on this passage. Note that  since the orbi t  
t i m e  i n  the constant magcetic f i e l d  i s  propor- 
t i ona l  t o  the electron's t o t a l  energy, the 
larger the energy obtained on the injection 
semiorbit, the l a t e r  the electron arrives f o r  
i t s  first axial  traversal  of the cavity.  

i n  view of our having 
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Injection Semiorbit and F i r s t  O r b i t  

We observed tha t  for cer ta in  inject ion 
phases rpwe could get electrons of nearly 
400 KeV from the injection semiorbit ( the 
passage through the cavity immediately follow- 
ing inject ion)  and that  the f i r s t - o r b i t  energy 
so obtained depends more c r i t i c a l l y  on rp than 
on anything else .  
matter what the com5ination of inject ion phase 
and energy, the phase a t  the ex i t  from the 
cavity i s  almost always greater than 60° (with 
respect t o  the maximum of the e l e c t r i c  f i e ld  
in  the accelerating direction taken as O o ) .  
In  f ac t ,  an energy greater than 300 KeV causes 
the f i rs t  o rb i t  t o  take so long t h a t  the f irst  
cavity t raversal  ( i . e . ,  the passage through 
the cavity following the f i rs t  o r b i t )  occurs 
when the R.F phase i s  far past Oo. 
other hand, energies l e s s  than 260 KeV do no; 
usually permit the electron t o  avoid. s t r iking 
the cavity on i ts  f i rs t  turn. Thus the range 
o? energies acceptable for  the first o rb i t  i s  
very restr ic ted.  It appears t ha t  the problem 
cannot be eliminated by al ter ing A, d, and 
hence Bo without going t o  an ar which has a 
very small phase-stable region. 
shows has the energy i n  the second o rb i t  de- 
pends on that  i n  the first when the injeczion 
semiorbit 's e x i t  phase angle i s  670. 
smaller energies on the f i rs t  o rb i t  cause too 
ear ly  an a r r i v a l  a t  the s t a r t  of the second 
cavity t raversal  while the larger ones came 
too l a t e  an arrival. 
energy (as  far as energy i n  the second o rb i t  
i s  concerned) i s  seen to  be 278 KeV. 

However, we found t h a t  no 

On the 

Figure 4 

The 

O p t i m u m  f i r s t - o r b i t  

The f i rs t  o rb i t  energy, which i s  the 
V. . of equation (31, depends on the energy 
op2he entering electrons as wel l  as on cp. 
The electrons entering with lower energies 
provide an ex i t  phase considerably smaller 
than those with the higher entering energies, 
meening they spend l e s s  time i n  the cavity, 
and the i r  f i r s t - o r b i t  energies are  not too 
low fo r  consideration. Table I shows typical  
energies a t  the exi t  from the semiorbit corre- 
sponding t o  various cp for input kinet ic  ener- 
gies  of 50 and 10 KeV. These figures axe for 
inject ion s t r a igh t  into the cavity p a r a l l e l  
t o  i t s  axis.  The output energies V can be 
altered by a few percent by varyin&%e posi- 
t i on  of the injection point along the cavity 
waU, and sometimes t h i s  proves convenient. 
There i s  no reason why the electron has t o  
come out exactly on the axis of the cavity.  
Of course, i n  constructing an actual  microtron, 
holes have t o  be d r i l l ed  i n  the cavity faces 
a t  the appropriate poicts, but these do not 
usually disturb the RF f i e l d  appreciably. 
turns out t h a t  the direction i n  which the 
electron is  muving a t  the e x i t  from the in- 
ject ion semiorbit i s  always quite close t o  
being pa ra l l e l  t o  the cavity axis. 
of  t h i s  i s  t o  place the center of the c i r -  
cular f i r s t  o r b i t  not half-way through the 
cavity on l i n e  00' (Figure 3 )  as would be 

It 

One e f f ec t  

desired but rather t o  the l e f t  thereof. When 
rp is between 165O and 180°, the center of 
th i s  c i r c l e  i s  shifted fur thest  towards 0 0 ' .  
It i s  shif ted away t o  the left  fo r  smaller 
cp. Low entering electron energies tend t o  
move the center toward 00'. 

One can also w y  the direction of the 
entering electron beam. 
the electron gun s l ight ly  ( - LOo) towards 
the axis i s  noticeable i n  that  it usually 
produces a small decrease i n  the phase a t  
e x i t  and ir. addition nay increase the exi t  
energy by several percent. It also changes 
the direction of motion a t  ex i t  so that  the 
f i r s t  o r b i t ' s  center i s  again shif ted away 
from 00' .  

The effect  of k i l t i ng  

F i r s t  Cavity Traversal and Subsequent Orbits 

The problem of matching injection con- 
dit ions t o  the resonant e lectron 's  perfect  
orbi t  was attacked by reqJiring that  on the 
th i rd  cavity t raversal  the electron gain 
390 KeV, that  it have a phase a , and tha t  
i t s  t o t a l  energy prior t o  t h i s  Traversal be 
1560 KeV so as  t o  sa t i s fy  condition (3 ) .  
This puts no r e s t r i c t ion  on the energy gain 
of the first traversal, which must be ad- 
justed so that  the 1049 KeV of kinet ic  
energy required i n  the t h i r d  o rb i t  i s  
attained. Even with t h i s  la t i tude no s e t  
of injection conditions was found permitting 
all these requirements t o  be met. Ir. the 
best  cases the required energy is  realized 
on the th i rd  o rb i t  but the phase i s  such 
',hat the electron always arrives fo r  the 
t h i r d  cavity t raversal  too soon and sub- 
sequently 6rops out of resonance. 

Fortunazely, tke a r r i v a l  error  i s  on 
the early side so that  a possible solution 
t o  the problem i s  t o  introduce something 
that  lengthens the third o rb i t  without 
a l ter ing the associated energy. 
t h i s  o rb i t  might be made t o  pass through a 
short piece of iron pipe whicb shields it  
from she DC magnetic f i e l d  and thus intro-  
duces a "s t ra ight  section" i n t o  the other- 
wise ci rcular  path. If t h i s  section i s  
insemed a t  the back of  the o rb i t  paxallel  
t o  the cavity axis as shown i n  Figare 3, 
the right-hand half i s  shifted t o  the r ight ,  
giving the additional e f f ec t  of moving the 
orbi t  center back towards 0 0 ' .  The s t ra ight  
section length provides an independent phase 
adjusunent which can be used t o  bring the 
electron i n t o  the cavity for the th i rd  
t raversal  at  both the correct energy and 
the correct time. 
electron through the s t r a igh t  section and 
hence determining the length required (by 
noting when the optimum phase angle was 
obtained) were writ ten i n t o  the computer 
program. 
Figure 3 t h i s  length was found t o  be 0.378 
cm. We believe t h i s  t o  be a pract ical  

For example, 

Means for following the 

For the case i l l u s t r a t e d  i n  
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solution, as straightening the electron path 
by such means has been used i n  microtrons 
before, not only  t o  provide extract ion from 
the f i n a l  orbi t  but also t o  shape ea r ly  
ones.9 Since we are applying the correction 
i n  the th i rd  o rb i t  where the electrons exe 
fairly energetic, no pronounced e f f ec t s  due 
to f i e l d  inhomogeneities a t  the pipe ends 
are expected, and as the second and t h i rd  
orbi ts  are separated by 5.36 c m  at the point 
direct ly  i n  back of the cavity, there should 
be no perturbation of o r b i t s  other than the 
third.  We also note that  since only one 
o rb i t  i s  t reated i n  this way, the disturbance 
is  not periodic, hence no beam osci l la t ions 
should result. 

summary of Results 

W i t h  the above-described adjustments a 
(3 microtron should be real izable  producing 
an output energy of 15 MeV i n  39 turns.  The 
sal ient  design character is t ics  of t h i s  
machine are l i s t e d  i n  Table I1 and <he early 
orbi ts  are plot ted i n  Figure 3. An investi-  
gation of the dependence of o r b i t  s t a b i l i t y  
on the angle of  inject ion shows t h a t  t h i s  i s  
c r i t i c a l .  For the chosen conditions electrons 
injected more than 1' from the assigned input 
beam direction (10' t o  the cavity axis) w i l l  
3ot be accepted into s table  orbi ts .  Thus a r ~  
electron gun is  necessary which will provide 
a large current within a very small angular 
spread. In  addition, deviations from the 
chosen entering phase angle of more t h m  

half a degree w i l l  r e s u l t  i n  the subsequent 
orbi ts  being unstable. 
starts o f f  by reducing the intensi ty  of the 
beam injected into the cavity from the cathode 
by a factor  o f  360. Nevertheless, with an 
e f f i c i en t  electron gun and good homogeneity 
i n  the magnetic f i e ld ,  f i n a l  beam currents 
ap2roaching 100 Ma should be obtainable. 

The accelerator thus 
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Table I 
Typical Energies i n  The F i r s t  Orbit  for Vazious Entering Phases 

and I n i t i a l  Kinetic Energies of 50 and 10 KeV. 

50 KeV 10 KeV 

v Exit Energy (KeV) Exit Phase (deg) 

120 365 65 
133 370 80 

325 90 
100 
100 14 280 

170 270 100 
100 
100 

175 2 9  
180 260 

:z: 2% 

Exit Energy (Keif) 

280 
305 
295 
B O  
YC 
260 
230 
245 

Output energy: 
Number of turns: 

Table E1 
Chzac te r i s t i c s  of a 15-MeV CW Microtron 

15.2 &v 
39 

Exit  Phase (deg) 

60 
65 
70 
70 
75 
75 
75 
75 

Cavity 
Type : Rigkt c i rcular  cylinder 
RF mode: 
Radius: a =?.SO cm 
Thickness : d = 3.75 cm 
Operating frequency: 
Wavelength : h = 13.15 cm 
Electr ic  f i e l d  ELnglitude a t  center: Eo= 1.q x 10 vol ts /mter  

TMO 

f = 1980 Mc/s 

7 

Injection 
I n i t i a l  kinet ic  energy: 
I n i t i a l  phase: 
Injection angle: 

High-energy orbi ts  
Energy gain per turn: 
Resonance electron phase: 

Straight section 
Location: 
Length: 

Magnet 
DC field : 
Radius of final orbit: 

10 KeV 

10' t o  cavity axis 
cp = 166 

Back of  t h i rd  o rb i t  
0.378 cm 

Bo = 540 gauss 
97 c m  

PAC 1967



7 54 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, JUNE 1967 

- .05 I I I I 
0' 10' 20' 30" a 

Fig. 1. Phase Stability Plots. Qy = 19.2'. 

d = 3.0 cm. 

300 1 1 1 1 1 1 1 1 1 
10 11 12 13 14 15 16 17 18 19 

X (cm) 

Fig. 2. Plots of Vr as a Function of h for Various d. 
Eo = 1.25 x lo7 volts/meter. ay = 19.2'. 
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Fig. 3. The Cavity and Early Orbits in the 15-MeV 
Microtron. 

6101 
6001 I I I I J  

260 270 280 290 300 
First Orbit Kinetic Energy (KeV) 

Fig. 4. Dependence of Kinetic Energy after First Cav- 
ity Traversd on Kinetic Energy after Injedion 
Semiorbit. Phase at Semiorbit Exit = 67 '. 
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