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The space-charge limit on the beam current which 
can be usefully stored in a colliding-beam storage ring 
is determined by the current density in the interaction 
region and, in the case of a thin, flat ribbon beam, by 
the value of By. the vertical p-function there. The 
quantity which IS limited is the dimensionless param- 
eter , 

9 s a constant (1) 

where J is the current density in the interaction 
region, ro the classical electron radius, and y the 
energy in rest-mass units. In the static “Amman- 
Ritson” limit, /3 appears because of its presence in 
frequency-shift f?&mulae. 1 By the same token, ,@, 
appears in coherent-instability limits when the only 
damping mechanism present is Landau damping by the 
non-linearity of the force between beams. 2 The appear- 
ance of the form (1) in the incoherent “Courant” limit 
is on a more speculative basis, 3 but it is probably 
warranted. 

The luminosity is proportional to the product of the 
current in one beam and the current density in the other. 
Evidently, if the stored current is limited, as for 
example, by the radiofrequency power available, the 
current density should be increased to the space-charge 
limit by adjusting the beam dimensions in the interac- 
tion region. If, on the other hand, there is no limitation 
on beam current, the limitation on luminosity will be 
set by the aperture that can be filled at the interaction 
region. In the former case, there is a clear gain to be 
got from decreasing py in the interaction region, and, 
in the latter case, there may be a gain, depending on 
other details of the storage ring. All high-energy stor- 
age rings now contemplated will be current-limited at 
high energies because of the rf power required for syn- 
chrotron radiation, so it is advantageous to design the 
magnet lattice to produce a small value of py at the 
interaction region. 

In the design of cyclic particle accelerators in the 
past, structures yielding abnormal p-functions, i.e. , 
p-functions differing greatly from R/LJ, have been 
studiously avoided; primarily because the large values 
of p, which tend to accompany the small values, aggra- 
vate the tolerances on the magnetic guide field, and, in 
an accelerator, no significant advantage accrued from 
abnormal values of P. 

That this was not the case in storage rings, where 
one beam is the target for the other beam, was realized 
by the French storage-ring group which provided in the 
design of AC0 for operating in a strong-focussing re- 
gime in which $ at the interaction region is com- 
pressed to about l/50 of its maximum value and about 
l/10 of its average value. A more extreme compres- 
sion of the vertical p-function is proposed to convert 
the Caqmbridge Electron Accelerator into a storage 
ring. The CEA scientists hope to achieve a reduction 
factor of about a hundred in a single “bypass” or beam 
siding where their detector will be located. 
t Work supported by the U. S. Atomic Energy 

Commission. 

It is possible to incorporate special sections into 
the guide field of any accelerator in such a way that the 
p-functions outside the special sections are undisturbed. 
Such sections are “matched” to the unperturbed strut - 
ture. Collins first noted that an extra-long straight 
section could be inserted into a normal AGS structure 
and matched at a single momentum using only two 
quadrupoles, 5 and other workers have elaborated the 
idea of long straight sections. 

A truly matched insertion is one which, when inter- 
posed in the base structure, does not disturb either the 
P-functions or the off-momentum equilibrium orbits. A 
straight section--one without bends of any kind--may 
have this property only if its radial transport matrix is 
the unit matrix, i.e., if it has a radial phase shift of 
21r. On the other hand, a general insertion, which may 
include bends, has no restriction on the betatron phase 
shifts. It is to the design of such structures that we 
address ourselves here. 

Suppose we have a storage ring or accelerator in 
which we denote the equilibrium-orbit path-length 
coordinate by s, the radial excursion by x and the 
vertical excursion by y. Let us denote two particular 
positions on the circumference by g and h, i.e., 
s=g and s=h. (SeeFig. 1.) 

Let the machine matrices at g, the transport 
matrices once around the whole machine, from g back 
to g, be 

cos Ccx+ax(g)sinpx P,(gN~P, Mldg)\ 

cos~~-~~kWw~ M23(8) 
0 1 / 

My = cos~~+c+iWn~~ $(g)shpy 

( -Yfig) siwy c~s~~-c~y(g)sin~~ 
> 

where 

‘(II 

Q(S) is the function describing the displaced equilibrium 
orbit for an off-momentum particle. * 

The transport matrices from any point g to any 
other point h are given by the matrices Ryg, h), a 
3 x 3 matrix, and RY(g,h), a 2 X 2 matrix. 

* 
The vector operated on by M, is (x,x’, Ap/p); that 
operated on by My is (y,y’). The notation is largely 
that of Courant and Snyder, Annals of Phys. 3, 1 (1958). 
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Rx’Y= 
11 

1 
1 

R;;“= &x,,(g) Px y(h) sin ti,, y 
, , 

T&y (h)l X,Y 
sin* 

cose& 1 

x 
R13 = v(h) - R;1’7@) - RI2 t(g) 

X 

R23 = Q’(h) - R;i V(g) - Rt2 V’(g) 

X 
R33 = 1 

(2) 

Fig. l--Coordinate System 

The angles $x and $ 
1 

are the betatron phase shifts in 
the radial and vertica coordinates respectively through 
the section of the orbit between g and h. 

These expressions, Eq. (2), may be used as 
recipes for designing sections of guide field giving 
desired orbit properties. For example, if we start 
with a uniform periodic structure such as that of a 
conventional alternating gradient synchrotron, we may 
design “insertions” which do not perturb the orbit 
properties outside themselves, or in other words, 
matched insertions. We can “pull apart” the base 
structure at some point and interpose a special section 
as shown in Fig. 2. In this case, Eq. (2) takes on an 
especially simple form. If the momentum terms are 
ignored, the recipe for a Collins straight section 
results. Since phase shifts Gx and tiy are added, the 
betatron frequencies are shifted by tix/2.rr and 3 /271. 

For a high-luminosity storage ring, an inser ? ion 
is needed with very small values of one or both of the 
beta functions at the place where the beams collide. 
Referring to Fig. 2, Eq. (2) applies between g and h 

and again between h and g’; thus, the recipe involves 
the properties of the base structure (at g and g’) and 
those desired at the collision region, h. It is worth 
noting that the phase shifts (I, and tiy are inherently 
free parameters in achieving%esired values of the P’s 
and Q’S at the collision region. Their values affect 
the total betatron frequencies, of course, and, conse- 
quently, are not wholly unrestricted; but, outside of 
narrow excluded regions, they may be chosen arbi- 
trarily. 

BASE STRUCTURE 

INTERACTION REGION 

(h/ Cs’l 

- INSERTION 65212 

Fig. 2 

In the SLAC 3-GeV electron-positron storage ring, 
the base structure was chosen symmetric about the 
insertion, so the insertion is also symmetric about the 
collision region. Thus, the problem of design is sim- 
plified to that of synthesizing a transport system from 
g to h giving the desired properties at h. 

Two approaches were made to the problem of syn- 
thesis: First, we used pencils and paper and thin-lens 
formulae, and, second, using the guidance thus ob- 
tained, we used the SLAC -developed beam-transport 
design computer code TRANSPORT to obtain final fits 
and exact properties. 

Pencil-And-Paper Approach 

To simplify the problem, we arbitrarily separated 
the problems of matching the momentum function, 17 , 
and that of obtaining the desired properties in terms of 
the transverse coordinates. 

Figure 3 shows the two sections of the insertion. 
In the momentum matching section between g and i, 
we ignored the transverse-coordinate transformation 
properties, concentrating on reducing both v and Q’ 
to zero at i so that they remain zero all the way to h. 
This done, any combination of lenses (or any elements 
with no magnetic field on their axes) may be used 
between i and h without affecting q anywhere. 

RADIALLY FOCUSING 
QUADRUPOLE \ (91 

III 
Ih) n 

INTERACTION REGION fi 
BENC 

L.-- 
G’ 

LOW BETA SECTION- MOMEW;~,$hTCH’N 
65211 

Fig. 3 
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Momentum Matching Section Low-Beta Section 

Consider a particle at g with no betatron oscil- 
lations. Its state of motion is specified by the vector 

We require 

(4) 

where the first matrix is the transport matrix from g 
to i. If both RI3 and R23 were zero, Eq. (4) could 
not be satisfied, because 

RT,ri + R;2 n’ = 0 RZl R;2 
and = 1 

RXq + RX v’=O 21 22 Gl RZ2 

have only the trivial solution 17 = V’ = 0. The same 
argument applies to any interval of the structure. Thus 
v must go to zero in a bending magnet (i.e., a magnet 
in which ~13 and ~23 are not zero), and, moreover, 
0 and I]’ must reach zero at the exit from a bending 
magnet if they are to remain zero in the following drift. 

For the case of an n = 0 magnet with bending 
angle 0, a drift, and a lens, (see Fig. 4) it is easy to 
see that the drift distance, s , and the focal length, f 
can be adjusted to satisfy 

(5) I v s=z-* 
2 

with the desired result. (See Fig. 4.) 

In the low-beta section, there are no bends, so we 
may drop the last column and row of the radial matrices. 

In reducing 77 to zero, we paid no attention to the 
betatron functions. We now have the task of tailoring a 
section to transform the given functions at i, px(i), 
py(i), ax(i), cry(i) to those specified at the interaction 
region $(h) (small), ax(h) = cry(h) = 0. We place no 
initial restriction on Px(h). The R-matrix Eq. (2) 
has 10 parameters of which we have fixed ‘7, so three 
parameters are variables. It is to be equated to a 
transport matrix, T, involving only the parameters of 
the transport system. For example, we might seek a 
solution with the doublet of Fig. 5 which has 5 param- 
eters. 

(i) f, f2 0-d 

Fig. 5 BJZALI 

R(Bxx(hh $X3 tiy) = ‘+o, fl, J,, f2, fig) (6) 

This unimodular matrix relation represents 6 cqua- 
tions in 8 unknowns, so we may fix any two. In 
practice, we would fix I2 to make room for the detector 
and fix the sum IO + 11 + I2 to preserve the path length 
for rf reasons. Then the equation may admit one real 
solution in the region of interest. Of course, since 
Eq. (6) is non-linear and transcendental, a real solution 
is not guaranteed. In our case, real solutions were 
found to exist with values of Py(h) as small as 5 cm. 

In practice, it may be desirable to be able to vary 
p (h) during operation with I,, 11 and I2 fixed. This 
c I early requires a triplet so that the three focal lengths 
fill out the required 6 variables. This is the solution 
we have settled upon. 

Having settled the question of what system to use, 
we terminated our pencil-and-paper work and turned 
to a computer to get exact design figures. 

Some general conclusions can be reached from 
Eq. (2) independent of the low-beta system chosen. If 
we require n!,(h) = o@h) = 0, we can obtain from a 
trigonometric identity 

2 

= a (7) 

with solutions 

Px,y(h) =$$-2 $gy2~ -(37 / 1’2(8) 

Fig. -I--The Momentum Matching Section 

PAC 1967



MORTON AND REES: DESIGN OF LOW-BETA INSERTIONS FOR STORAGE RINGS 

Complex solutions represent unstable motion, so we 
must ensure that the discriminant is positive. 

Px,y(i) 2 2 R$’ R%iy I 1 
The smaller of the two solutions is that with negative 
sign, and that solution satisfies the inequality 

(Rif;“) ‘ ( ) Rx’Y z 

$--Jg- 5 Px,y(h) 5 2 
Bf,2+ i) (10) 

Thus, in general, we need large p(i) and small R12. 
We found for the triplet system that, in trying to 

produce smaller RI2 (to get smaller p 
struck the limit on x-stability, Eq. (9).’ 

(h)), we always 

The Computer-Designed System 

We have available two large computer programs to 
aid us. 

TRANSPORT is a code intended for the design of 
beam transport systems. 6 The formulation is in terms 
of transport matrices and a matrix describing the 
behavior of an ellipsoid in B-dimensional phase space. 
In addition to manipulating the matrices, the program 
is capable of varying any chosen transport-system 
parameters (e.g., gradients, fields, positions) seeking 
a property of the beam matrix or the transport matrix 
specified by the user. This code, currently in 
SUBALGOL, a Stanford language, is being implemented 
in FORTRAN IV. 

SYNCH is a code, now rather widely used, for the 
design of synchrotrons. 7 We used TRANSPORT to 
adjust parameters and to achieve the desired properties 
and SYNCH to tabulate the resulting orbit functions. 

The values of the characteristic functions at g 
were 

‘,8, = 13.22 111 cxx = -2.06 q = 2.28 m 
at R 

- by= 4.52 m 01~ = 1.44 r/‘= 0.380 

The configuration of the momentum matching section is 
shown in Fig. 6 

(d (i) 

~s--TI r-i-1 

4 5m ~2989m--~2.5m~ 625m /+- 25m---( Conclusion 

632.6 

Fig. B--Computer Designed Momentum 
Matching Section 

This design technique separates the problem of 
producing a small beam size -at the interaction region 
from that of not disturbing the eouilibrium orbits of 

QFl is a quadrupole and B is a bending magnet. They 
are standard ring components, the same as those used 
in the basic structure. The separation between the 
bending magnets was set as small as physically possible, 
and TRANSPORT was instructed to vary the strength of 
QFl and the drift distance S to reduce q and )I’ to 

off-momentum particles outside the insertion. It may 
be used to produce desired values of px and & in the 
middle of the insertion where 7 = 0. The same” tech- 
nique is applicable to the design of synchrotron sections 
with specially chosen beam properties. 

zero at i. Then the characteristic functions at i were 

(Px = 9.63 m ctx T-1.96 q=o 

P, = 22.62m cyY =-I.72 v’=O 

The field in the bending magnets was 7.867 kilogauss 
(fixed by the requirement of orbit closure), and the 
gradient in QFl was 66.99 kilogauss/m. 

The total length of the low-beta section was fixed 
for rf reasons, and the distance from the last quadru- 
pole to the interaction region was chosen to be 2.5m to 
make room for the detector. The low-beta section is 
shown in Fig. 7. 

0) OUADRUPOLES th) 

$T;y f b jq &ON INTERACTION 
h5ml .5m 1 2.011m l.75m /.75m 175ml 2.5m I 

$5117 

Fig. 7--Computer Designed Low-Beta Section 

It was found that, in order to achieve the lowest 
py at the interaction region, Ql should be close to 
the momentum matching section and Q2 and Q3 should 
be close together. 

The values of the betatron function at i, the 
entrance of the low-beta section, along with the con- 
straint that ox = ocy = 0 at the interaction region, 
were used in the TRANSPORT program to obtain the 
values for the quadrupole field gradients for various 
values of py at the interaction region. Table 1 gives 
both the quadrupole field gradients and the value of px 
at the interaction region for various values of By at the 
interaction region. 

at h 

Table 1 

Py Px KQl KQ2 KQ2 
meters meters kG/m kG/m kG/m 

.l 1.84 -21.53 83.31 -98.55 

.4 .93 -50.44 88.34 -87.47 
1.11 66 -60.80 86.35 -70.08 
2.5 :49 -63.45 80.82 -47.48 

These values do not agree well with values obtained 
using thin lens approximations, because the magnets 
are not well represented in that approximation. 
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