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The discussion of the force between moving 
charges is a curious and interesting problem, 
since the solutior. is not as obvious and straight- 
forward as one might suppose, because ultimately 
an electrodynamic theory must be based upon ex- 
perience. The electromagnetic theory, for 
example, is too broad a theory to be verifiable by 
any single experiment; it is the product of several 
singular observations. However the range of ob- 
servations upon which the theory rests is extreme- 
ly limited (as regards particle energy, for example) 
and it cannot be expected that it would not be 
modified to account for new observations. 

The electromagnetic theory is probably the 
most satisfactory of the various physical theories 
which we presently possess, in spite of its in- 
completeness and inconsistencies, and it is there- 
fore on this basis that we propose to estimate the 
solution of the problem of dispersion due to space 
charge. In such a case, it 1s possible to solve 
an electrodynamic problem in the stationary (or 
laboratory) frame using the electromagnetic fields 
in that frame. It is, alternately, possible to 
solve an electrodynamic problem in a moving 
fra.me , using electrokinetic forces (no magnetic 
field) and to translate the observations into the 
laboratory frame using the Lorentz transform. The 
latter is sometimes preferred because one can 
usually employ non-relativistic (linear) mechanics 
and, in addition, magnetic forces due to ion 
motion in the moving frame are negligible. 

Continuous Beams 

Several analysts have obtained non-relati- 
vistic solutions of the paraxial ray equation for a 
solid,constant velocity beam in free space. 
McGregor-Morris and Mines’ calculated beam 
spreading of an initially parallel beam d e 
self-repulsion of the electrons. 9 

to 
Watson extend- 

ed this treatment by including the magnetic forces 
involved. The subject having been broached, and 
because of its technical importance, extensive 
treatments nd discussion were give 
and Gibson 2 

g by Fowler 
; Van Boories and Dosse ; Thompson 

and Headrick:; Spangenberg , Field and Helm6; 
and Schwartz . The additional effect of thermal 
velocity limitations (on relatively low voltage 
beams 
Hines 8 

has been9investigated by Cutler and 
. and Danielson, Rosenfeld and 

Saloom~?ol!F1~&er , some effects of the ionization 
of residual gas thus neutralizing space charge 
forces has been examined by Hernqvist and 
Linderl ’ . 

The relativistic solution of beam spreading 
due to space charge forces in free space has been 
discussed by Yadavalli12. Numerous schemes to 
foit space charge forces have been invented which 
are outside the scope of this particular discussion. 

The method of analyzing beam spreading, 
applicable to low voltage beams with little 
spreading is outlined here for comparison to the 
relativistic analysis. 

Expressing the non-relativistic Lorentz force 
in cylindrical coordinates (using dots to indicate 
a derivative with respect to time) 

i = $-(E~++ -+@ 
(la) 

i-‘-r+‘= $$Er + r+5,- 2 B,) (lb) 

rjdt2if =+$-(~~+i& - ia,) (ICI 

By symmetry Ez, E +, , BZ and Br vanish so that 
these equations become 

;=o (24 

. . 
r -i+ = go(Er - i BP) (2b) 

f-q+-Zi+=O (2c) 
Note that (where primes indicate differentation 
with respect to the Z-axis) 

f= f-12 

p = ).-“i22+ /-ii’ 

and that w.e may put (the paraxial ray assumption, 
r+< i < 2) 

p+&+ 22 Ii2 = ‘go v 
or F’ r so V’ 

Thus, Eq (Zb) may be put in the form 

2Vr’l+ L//r’= E, -i& (3) 

For a constant potential beam V’ = 0; ignoring 

BP at low voltages and using Gauss’ theorem to 
obtain the radial electric field from the total 
charge, 

E,= 1 
ZQT<it- 

we have, finally, 

(4) 

Integrating once, with the boundary condition 
r’ = rlo, r = r 

0’ 
z=o 

/qY- kYZ =*2*4 Rue (5) 
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Reintegrating, 

L-G: = 2d%9~,~ 4) 
T-77” d a 0 

This integral has been tabulated in numerous 
places , 

The dispersion of a drifting beam due to space 
charge is considerably reduced at higher energies 
as compared to a non-relativistic beam, not only 
because of the effective increase in mass of the 
particles at higher energies, but also because of 
the reduction of the self-repulsive force. 

Unfortunately there is a fundamental diffi- 
culty in obtaining a precise evaluation of the beam 
dispersion. The radial equation of motion for an 
electron of velocity v at a distance r from the 
axis of the beam is of the form 

&(7$) = +fi- g)fl 
wheref2 is a function of the distribution of 
electrons over the beam cross-section and the 
initial displacement of the electron whose motion 
is required. If the beam actually disperses it is 
impossible to know this distribution until the 
equations of motion are solved, even if we assume 
an initial distribution. However, the general 
characteristics of the forces involved are evident, 
and if we make the assumptions that the particle 
energy is not affected by the dispersion and that 
the distribution is uniform over the beam cross- 
section, we can estimate the dispersion of a beam 
of particles of initial diameter 2r whose motions 
are also initially parallel to the bream axis. 

The force on a particle at a specified radius 
only depends on the charge inside that radius. If 
the charge density of the beam is p and the total 
current I 

By Gauss’ theorem the outwardly directed force of 
the radial electric field due to the beam charge is, 
at a radius P, given by 

P 
E=2-= 

Jr 
27-q v cz 

In addition the beam current has a magnetic field 
associated with it, producing an inwardly directed 
force, and this is given by 

6 ‘AH=&& $- fl 
a 

The total radial force on a particle a distance r 
from the axis of the beam is thus 

eEfev5 =2s 
I ($-&v)=2~ y 

where,9 = v/c and 7 = /z is the 
impedance of free space. 

The radial motion of the particle is therefore 
given by 

d4 elry 1-p 
dtf= rm,2rp p 

(7) 

The solution of this equation for the beam 
envelope (r = r ) is straightforward. Integrating, 
with the boundgry conditions dro/dt = 0, 
r 

0 
=a, t=Owe have 

(8) 

where q = eI7 (1- p2)/ 7rn z?Tp. This 
expression cannot be integrat%d in terms of 
elementary functions: however, a substitution of 
variable will result in form which may be con- 
veniently tabulated. Let 

Then we may write the solution of Eq (8) in the 
form 

q =&- G!x =q n.;(z;,) 
(9) 

where t = z- 7 
c 72-l 

is the distance at which the 

beam envelope has the diameter ro/a. 

With this solution it is possible to solve the 
original differential equation. Rewriting Eq (7) 
in the form 

CPr 4r 
-p-=-p- 

we observe that the solution is 

i- =2- 
where b is the particle radius at t = 0, and this 
is easily proved by noting that 

CPr -=$$&+j(+j dt” (10) 

It is therefore evident that the assumption of 
uniform charge density in the beam cross-section 
is consistent with the solution. 

Note that the particles in the beam move as if 
they were under the influence of repulsive force 
whose intensity varies inversely as the distance 
of the particle from the center of repulsion, that 
is the beam axis. The radial velocity of the 
particles is acquired at the expense of the 
potential energy of the beam: the axial velocity 
remains constant. It should be noted also that 
the above solution is a free-space analysis; in 
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an enclosed space, such as a conduction beam 
tube, the space charge forces would be reduced. 

The above solution for the beam expansion 
due to space charge forces was treated in the 
laboratory frame using electromagnetic field 
equations. It is also possible to solve this 
problem, as mentioned earlier, electrodynamically 
in a frame moving with the beam, using a rela- 
tivistic transformation to transfer the solution 
into the laboratory frame. 

In the moving frame the divergence equation 
is valid 

v*o”=p 
but the estimate of the charge density must be 
that of the moving observer. The laboratory frame 
estimate p is related to the moving frame esti- 
matep by the condition P,=~,D since the moving 
frame ‘sees’ the beam dimensions ‘contracted’ in 
the direction of motion. (And thus, the question 
of the validity of Gauss’ equation whzn the 
charges are in motion is evident, V. D =p,/r 
where the charge density is based up@ a 
determination in the laboratory frame .) 

The divergence equation may then be solved, 
very approximately, since 

&(rE,)= -g- 
0 

and hence, 

with the boundary conditions Er = 0, r = 0. 

The current flow (only observed in the 
laboratory system) may be substituted for the 
beam density since 

I=f,Vm-* 

The expansion of the beam may be calculated in 
the moving frame, using the equation of motion 
for a peripheral particle, 

d2r 
+, zz 

e1 -- 
dP - fn 0 m, 27~6~ r VT 

Integrating, with the boundary conditions 
dr/dt = 0, r = r. and noting that EoC = l/y 
and ,!?J’ = v/c = K/T 

This expression cannot, as above, be integrated 
again conveniently. But, letting X = ln(r/r,) the 
above expression can be put in the form 

The time in this expression may be converted into 
laboratory time since t = ;y t; however, if we 
wish to express the be m expansion in terms of a 
drift distance in the laboratory frame, 

and the final expression becomes 

J 
eln 

moc2n;/~2-~)M J? = J 
Ldx fi (11) 

which is precisely the same as that derived above. 

Bunched Beams 

To calculate the expansion of an ion bunch in 
free space due to space charge forces it is con- 
venient to solve the problem in a frame moving 
with the bunch (assumed to be composed initially 
of mono-energetic particles in the laboratory 
frame), and thenlyansform the results into the 
laboratory frame . 

We assume for simplicity a spherical Packet 
of N electrons travelling at a velocity v = fl c. 
(This packet will not be spherical in the laboratory 
frame.) Then, for a spherically symmetric dis- 
tribution a particle at the edge of the packet 
experiences a radial force, and its motion is 
described by 

ci2r Ne2 -- 
dtz - 47r5, m, r2 

(12) 

Integrating once, 

dr ' (I dt= 

where dr/dt = 0, r = r , t = 0 are boundary 
conditions. IntegratinOg again, 

(13) 

/m + arcrod& =/x 5 (14) 

Using the Lorentz transform, we can now convert 
to the laboratory frame: 

t,= rt 
f’ I ‘(i - p=co*=z?) 

(15) 

where 4 is the angle between r and the direction 
of motion measured in the moving frame. It is 
easily shown that the angle z$ in the laboratory 
frame is related to that in the moving frame by the 
expression (wv$e V is the relative velocity of the 
two frames) by 

tL7n d = +-y$j (16) 
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where u 
rl 

is the particle velocity in the laboratory 
frame a d related to that in the moving frame, u, 
by 

u = u, 
J f + 2&05ti +~~,)z-(~Sm4,)2 

I + 22 cos z$ 
(17) 

c ” 

Inserting these transformations in the above 
equations, where we have also put the drpt 

7 distance in place of the time, t = Z/v = -- 
we have: (1) for the transverselexpansion, 

CW 

and (2) for the longitudinal expansion, 

There are several objections to the above 
solution. First, it is not unreasonable that the 
number of electrons in the bunch is sufficiently 
large, such that the field intensity at the 
periphery of the bunch 

is also large enough to require the use of rela- 
tivistic equations of motion in the moving frame 
(the frame stationary with respect to the bunch). 
Secondly, there is no single transformation to 
return to the laboratory frame, since the energy 
of each particle will depend upon its coordinates. 

The first comment introduces considerable 
complication and this is customarily avoided in 
such problems by using non-relativistic 
mechanics in the moving frame. For example, in 
this instance the equation of motion in the moving 
frame is, precisely, where a dot indicates 
differentiation with respect to time, 

$/a4 = /z; r2 (21) 0 0 
but since 

we may write Eq (21) in the form 

,. 

p -ir-i/ 

Me2 
r: 2 3% 

c 
= 47zEom,r2 

Integrating, with the boundary conditions 
dr,/dt=O, r=r o1 t = 0, 

Re-arranging , reintegrating and simplifying, 

where a = Ne2/4RE, Xl&’ for brevity. As 
remarked above, the transform into the laboratory 
system is coordinate dependent and this results 
in further complication, although the solution is 
straightforward. 

Probably of more importance is the energy 
spread which occurs in the bunch due to its 
dispersion, and its effect on a beam transport 
system. 

The transformation of the bunch into the 
laboratory frame of reference is actually much 
more complicated than superficially indicated 
above. What we are looking for is, presumably, 
the velocity of the coordinate system relative to 
which the momentum of the particle ensemble is 
eaual to zero. 
this is 

For a single particle evidently 

/SC” 
T=T 

where p” and E are the momentum and energy of 
the particle. For an ensemble of particles if we 
use the total momentum and total energy (with 
respect to the laboratory frame), then since the 
Lorentz transform is linear, 

XL-= 

This quantity 7 does not have the form of a 
total derivative of any quantity with respect to 
time: for this reason the concept of center of 
mass for accelerated pfiticles cannot be used in 
relativistic mechanics . 

On the other hand, one might consider the 
rather tedious alternative of ‘tracking’ every 
particle of the ensemble and ‘reconstituting’ the 
bunch at any desired location. 

The bunch is not a rigid body and, of course, 
the Lorentz transformation (for intervals) does 
not strictly apply. The original spherical packet, 
for example, has a somewhat cometary appear- 
ance after drifting some distance. 

The writer is pleased to acknowledge the 
benefit of discussion with W. Ramler and 
G. Mavrogenes , of Argonne National Laboratory, 
on the above topic. 
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