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Summary 

Finite conductivity of the vacuum cham- 
ber wall can cause unstable coherent trans- 
verse oscillations of the center of charge and 
also oscillations of the transverse cross sec- 
tion of a beam of charged particles. The 
former case, which can be characterized by a 
dipole oscillation, has been studied extensively 
by others. 1, 2 In this work, a study has been 
conducted of the cross sectional oscillations 
of a nearly circular beam centered in a circu- 
lar pipe, and a self-consistent solution has 
been obtained for both monopole and quadru- 
pole oscillations. Dispersion relations for the 
oscillation frequencies have been found, and 
conditions for stability have been deduced. 
For the quadrupole instability the growth rate 
and threshold are very close to those obtained 
for the dipole instability, 1, 2 differing only by 
a geometrical factor of order unity; whereas, 
for the monopole instability, the growth rates 
are so small that the oscillations in present 
electron accelerators and storage rings will be 
suppressed by radiation damping. 

Introduction 

Laslett, Neil and Sesslerl have demon- 
strated the possibility for a beam of charged 
particles to have unstable coherent transverse 
oscillations due to the finite conductivity of the 
vacuum chamber walls. In their analysis, 
Laslett et al. assumed that the longitudinal 
charge density variation was zero; Courant 
and Sessler, 2 and Dikanskii and Skrinskii3 
found that it is also possible to have unstable 
coherent transverse oscillation for the case 
where the beam was bunched due to the wake 
field of one bunch acting upon another bunch 
and upon itself in successive revolutions. In 
the above papers the unstable oscillations were 
oscillations of the center of the beam. In this 
work we treat some casesof the oscillation of 
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the transverse size of a longitudinally uniform 
or bunched beam which is confined within a 
circular pipe, with the center of the beam 
fixed along the pipe axis. 

In Sec. II we characterize the monopole 
and quadrupole oscillations of a beam, uniform 
or bunched, by some assumed charge densities 
and present the equations of motion for the 
particles. 

Section III contains the body of the 
analysis in which we solve the Vlasov equation 
combined with the equations of motion given 
in Sec. II for a self-consistent charge distri- 
bution and obtain a dispersion relation for the 
oscillation frequencies. The dispersion 
relation is analyzed in Sec. IV, culminating in 
the determination of the growth times and the 
stability criteria for the oscillations. 

Some numerical illustrations of the 
results and experimental observations are 
given in Sec. V. The effects of Landau 
damping, resulting from a spread in the ampli- 
tude of oscillations, is considered in Sec. VI. 

II. Monopole and Quadrupole 
Charge Oscillations 

In this section we characterize by some 
simple models the monopole and quadrupole 
oscillations of a uniform or bunched beam 
inside a metallic vacuum chamber. As the 
major curvature of the vacuum chamber has 
little influence on the calculation of the fields, 
the chamber is taken to be a straight pipe 
of radius b. The particles in the beam are 
assumed to be moving longitudinally in the 
z-direction, along the axis of the pipe, with a 
constant velocity, v. 

The unperturbed beam is taken as uni- 
form in the transverse cross section over a 
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circle of radius a, with the center of the beam 
fixed along the pipe axis. Thus, for the charge 
density of the unperturbed beam 

/I$ = T$2 H (a - r) 1 
where H(x) is the Beaviside unit function. For 
the uniform beam e A is the charge per unit 
length, while for the bunched beam e h = eN 
f (z-zo- z,t) with the function f(x) normalized 
such that eN is the charge in the bunch 

ii- f?-ddx = 1) * 
In the perturbed beam, we assume the 

radius varies as (a + 5) for monopole oscil- 
lation and (a + f cos 20) for quadrupole oscil- 
lation with the perturbation amplitude 5 given 

(2.2a) 

(2. 2b) 

As a consequence of the perturbation, to first 
order in g the charge density can be written 
as 

f =/2 -+ 5/; ) (2. 3) 

where 

(monopole beam) (2. ha) 

(quadrupole beam) (2. 4b) 

For a particle in the beam, the equations 
of motion are 

i)&= -(w,~+ ,Sk)y , ;i = & 

; ‘=- (&‘? 3K), , l’d 23 
L( 

(2. 5b) 

ixeTe; , ad j= v- (2. 5c) 

x, Py and P, are the conjugate 
momenta, and the upper and lower signs cor- 
respond to the monopole and quadrupole oscil- 
lations. The contribution of both the external 
fields and the elecpomagnetic fields due top0 
are included indo I while the contribution of 
the electromagnetic fields produced bypl are 
contained in the constant K. The values of K 
are determined from Maxwell’s equations and 
the results are presented in Appendix A. 

The transverse position of each particle 
in the beam can be found by solving the equa- 
tions of motion with some known initial condi- 
tions. Knowing the position of every particle 

in the beam, in principle, we can construct 
the charge density of the beam. A self-con- 
sistent solution is obtained if the charge densi- 
ty we constructed is the same as the one we 
assumed (p in eq. 2. 3). A convenient method 
by which to obtain this self-consistent solution 
is to find the particle distribution function in 
phase space. 

III. Self-consistent Distribution 
Functions in Phase Space 

In this section we proceed to find the self- 
consistent particle distribution functions in 
phase space, p (x, y, z, P,, Py, Pz, t), which 
give rise to the charge densities assumed in 
Section II. In analogy to Eq. (2. 3) we write 

Y= ~~~~~~,P,.p,)+su/(~,y,~,~~,I~~(P~-s,), (3. 1) 

where v o and p1 are the particle distribu- 
tion functions corresponding to the charge 
densities f o and pl , i.e., 

/ = er/u.xS(Fp&+ 
and 

p e ~G(Q-i$,)dj~ 
i 

(3.2) 

(3. 3) 

In general, the particle distribution 
function satisfies the Vlasov equation 

*JY .‘ay Jy T”+q t&-pig 
* JY 

(3. 4) 

4 ap> P$ 

‘J-~+p~ 10. 

When we substitute eqs. (2. 5) for the 
time derivatives of the coordinates and mometia 
and eq. (3.1) for p into the Vlasov equation, 
we obtain to first order in 5 

P aair + q- 
J% pa _ ,;&$-.,~2+ 0, 

J/+ “1 (3. 5) 

(3. 6) 

with the upper and low signs for the monopole 
and quadrupole oscillations, and k = 0 for the 
bunched beam. 

When a self-consistent solution v, that 
satisfies eqs. (3. 2) and (3. 5) is inserted into 
eq. (3. 6), a self-consistent solution yl that 
satisfies eqs. (3. 3) and (3. 6) is found with the 

PAC 1967



604 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, JUNE 196’7 

oscillation frequency, &, obeying the disper- 
sion relation 

4&y- (& - & /%a . 

The consequences of this dispersion relation 
are explored in the next section. 

IV. Consequences of the Dispersion Relation 

In this section the dispersion relation, 
eq. (3. 7), is analyzed. The values of k are 
restricted to kv = n 2, with R the revolution 
frequency, n a positive integer for the uni- 
form beam, and n equal to zero for the 
bunched beam. It is convenient to write 
fd o = I.),.2 with .z) 

0 
the unperturbed number 

of betatron oscillations per revolution, so that 
we obtain for the dispersion relation: 

a [A; (4 + A’ Ki &,I, (4.1) 

where K, and Ki denote the real and imag- 

~~~~~~~~~~~t two of the roots 
or 

ws (M t 2 zL)sL 

For the case of the uniform beam the 
sign of the imaginary part of K (W ) is 
determined by the sign of o , so that 

cd = (h fJdo)n; 
a h-hL~l~*SLJ) 

4 tb n- 
aK(lnn+P&sLI , 

(4. 3) 
;i ,ijh(t?~f23,) 

4 ,do n 
with the upper sign representing fast wave, the 
lower sign representing a slow wave, and 
Ki(J nn f 29 onl) i 0. Since the motion is 
damped when imaginary part of LJ is negative, 
the fast wave is always damped, while the 
slow wave is damped only for n C. 2 4 o. How- 
ever for n 12do the slow wave grows 
exponentially with an e-folding time T given by 

TZ 4&2 
aR;(tnn-2d.~l) 

(4. 4) 

For the bunched beam K,(d) = K,( -dJ) 
and Ki(W) = -Ki(-W ) SO that the dispersion 
relation is given by 

&E z &E z &Jo R I .53&f&z)), &Jo R I .53&f&z)), 
0 0 

(4. 5) (4. 5) 
. . a Xi (2 Jo fi.l a Xi (2 Jo fi.l 

-A -A 
rz3o-Q. rz3o-Q. 

Hence oscillation is damped if Ki(2 -tiO-x) > 0 
and grows exponentially for Ki(2 z’~~L)< 0 
with an e folding time, li-, given by 

r ‘Z - Y 24 Jz. 
a k,* (2 a-Jo n) (4. 6) 

Unstable mo\nopole oscillations have very 
long growth times (many years) and thus im- 
pose no practical limitations on the design of 
accelerators and storage rings. However, for 
unstable quadrupole oscillations the growth 
times are short enough to be of practical 
importance. Hence, we restrict our attention 
to only quadrupole oscillations. We find for a 
single bunched beam that quadrupole oscil- 
lations are always stable if 

.m c 2 .d c (-f j 

with man integer. For unstable quadrupole 
oscillations the maximum growth rate, l/r* , 
is related to the maximum growth rate of the 
unstable dipole oscillations of Laslett, Neil, 
and Sessler, l liTI I by: 

/ _ %‘;k - .- 
G ( ) (2 

In general, the actual growth rate is less that 
(1 /r ) calculated from eq. (4. 6) because, in the 

, (4. 8) 

analysis thus far, all of the particles have been 
assumed to have the same unperturbed fre- 
quency, W,, i. e., Landau damping has not 
been considered. The effects of Landay damp- 
ing will be discussed in the next section. 

V. Landau Damping of 
Quadrupole Oscillations 

If there is a sufficiently large spread in 
the unperturbed oscillation frequency, &Jo, it 
is possible to have stability as a consequence 
of Landau damping for cases in which the 
stable condition eq. (4. 7) is not satisfied. A 
spread in W, may be achieved by a spread in 
the betatron oscillation frequency, go, due to 
a variation in the oscillation amplitudes of the 
particles, or a spread in the revolution fre- 
quency, .R , due to an energy spread. Under 
these conditions, the dispersion relation for 
quadrupole oscillations of a uniform beam is 

j I 
zCknL. fZibi)f(~[~ +(/+i)V]d~~dt- (5 1, 
00 eA [4koZ-(hn-~)2] ’ 

with 

(5.2) 
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and 

(5. 3) 

where f(E) and p,(r) are the energy and 
radial distribution functions of the particles, 
normalized such that 

00 
Ire 1 EdE=l 
0 

anA J?CFpt (r)dr = X 

and the other parameters are defined in 
Appendix A. This dispersion relation is 
similar to the dispersion relation that has been 
treated exhaustively by Laslett, Neil, and 
Sessler. l For the case where the spread in 
the quantity, S , defined by 

s = (n-2d) .sL 

is larger than 

in S is smaller than 
the oscillations are unstable and the maximtm 
growth rates are given by 

h f,j32C 
3 2 

a I - 
ivm (3. 4) 

A similar dispersion relation holds for 
the quadrupole oscillations of a tightly bunched 
beam ( >iLj2r Rcc 15 ). For this assumption 
the oscillations are Landau damped when the 
spread in 2 z’,L~ is larger than 

and 

,\i r, /3’c ,‘C<’ 1 -+2 l- 

s 

A;= -- 
- Sn’h Y7in 

ali&~~t;&mc R 1 !iTfl th i-T k=; $ 
3* ) 

1 
y;;f :kt+spread in 2 t),a‘ is less than 

and (m-1/2) C 2 -$.<m, the 
qua&upo?e oscillations are unstable and the 
ma?iimum growth rates are given by 

I .- = - #; # (3. 6) 
Gn 

171. Numerical Examples and Observations 

In most accelerators and storage rings, 
such as the Brookhaven AGS, Argonne ZGS 
and SLAC Ring (proposed), the cross sections 
of the beam and vacuum chamber are not circu- 
lar. Therefore, the theory must be extended 

before it can be rigorously applied. However, 
for the purpose of illustration, we calculate 
the spread in (2 Joa) necessary to Landau 
damp quadrupole oscillations in these machines 
and the maximum growth rate, using the 
machine and beam parameters given below. 

SLAC 
AGS ZGS RING 

y= 1.5 
A = 1.3 x 108 3.2 x lo* 
d- = 1016 1016 
;=6 = 3 7. 12.5 5 

3 x lo3 cm 
3 x 10 cm 
5. 25 
6 x lo3 
3.7 x log cm-1 
0.4 x 1018 set-l 
1 cm 
5 cm 

For these parameters, the local damping 
fields restrict the range of unstable oscil- 
lations in the AGS to 8. 494 -3 < 8. 5 or 
8. 994 d (’ 9. 
to &p-q 

While a sprea% in 2 t’,n equal 
will produce Landau damping 

with 

Ai = -. 816 x lo4 + . 93 ReG (2 do), 

Ai = 7.04 T . 93 ReG (2 Jo), 

and 00 

c 
Jrik i2fi nx 

G(x) = n = 1 
-3 

A plot of ReG(x) and ImG(x) is shown in 
Fig. 1. The maximum growth rate is 

l x- 
‘rn 

= - Ai set-’ . 

Similar calculations are made for the ZGS 
and SLlzC Ring. For ZGS, oscillations may be 
unstable when 0. 86 < do< 1 or 0. 36<3, ( 
0. 5, with 

Ar = - 0. 95 x lo3 + 0. 55 ReG(2 do) 

Ai = 0. 46 + 0. 55 ImG(2 do). 

For SLAC Ring, unstable oscillations may 
occur when 5. 41 < z/,< 5. 5 or 5. 914 do 
( 6. 0, with 

A, = 0. 471 + 0.013 ReG(2 do) 
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Ai = 0. 0168 + 0.013 ImG(2 9o). References 
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Appendix A 

The perturbed electromagnetic fields 
and hence the perturbed forces on a particle 
are calculated from Maxwell’s equation. The 
value of K determined by the force is 

K= Fx 
6X 5.x 

(A. 1) 

For the uniform beam we obtain for the mono- 
pole and quadrupole oscillations: 

(monopole) 

.+ (quadrupole) 
(A. 3) 

and for the bunched beam we obtain: 

f+- Yr,lUCZ r,NaS:3 fl~3*y+iTbq+q7 
rc$) 

II 
zhd tib& 

x4 R’ ?fx+RZ 1 

tl=, 

K= 
(A. 5) 

where r. = classical radius of the particles 
L = length of the bunch 
R = radius of the machine 
ti = c-l/n 
ii = conductivity of the pipe 

and f (x) is the complete gamma function. 
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