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SPACE-CHARGE EFFECTS ON THE QUADRUPOLE FOCUSING SYSTEM 
IN LOW-ENERGY PROTON LINEAR ACCELZRATORS* 

Shoroku Ohnuma and Joseph N. Vitale 
Physics Department,, Yale University 

New Haven, Connecticut 

Summary. A general computer program has 
been used to calculate the stabilitv diahrlam 
for (+)(-)(+)(-) quadrupole arrangekents-when 
the space charge is uniformly distributed in 
an elliptic cylinder or an ellipsoid. Linear- 
ized equations for longitudinal and transverse 
envelopes of the bunch have been solved simul- 
taneously in order to find the velocity 
dependence of the phase damping. 

I. Introduction 

In the past few years, a number of studies 
have been made for the effects of space charge 
in a beam transport system an 
proton linear accelerator.l-1 9 

in a low-energy 
kost of these 

investigations are, however, primarily on the 
longitudinal phase stability in proton linacs 
and the limiting current due to the reduction 
of the phase stable area. 

For space-charge effects on the trans- 
verse motion of the particle, Kapchinskij and 
Vladimirskijl assumed a uniformlv distributed 
elliptic cylinder and calculated betatron 
oscillation parameters13 for quadrupole focua- 
ing systems in proton linaos. Catura4 and 
CrandalllO also used a cylinder for their 
numerical studies of transverse motions assum- 
ing uniform as well as non-uniform charge 
distributions. Their results are, however, 
confined to drift spaces with essentially no 
focusing elements involved. h uniformly 
distributed ellipsoidal bunch has been assumed 
by Lapostolle5 in his formulation of space 
charge effects on longitudinal and transverse 
motions in a linac and a method for applying 
this formalism in a numerical computation has 
been discussed in detail. 

It is quite obvious that the motion of a 
particle bunch in a proton linac under the 
influence of a strong space-charge force is 
quite complicated and that its entire picture 
could not be found without performing a detail- 
ed numerical calculation. This would certainly 
involve an orbit tracing of hundreds of arti- 
cles or equivalent rings and disks.5r1°* iel 
Even for the study of the longitudinal phase 
motion alone, it is not at all clear whether 
one can simply represent tile transverse motion 
by one or two constant parameters.3,7,9 For 
a given focusing system, the transverse 
envelope of the particle bunch is affected by 
its longitudinal size so that, at least in 
principle, one cannot control the transverse 
motion without first knowing the phase motion 
throughout the linac. The work reported here 
was motivated by the belief that (1) the design 
of a focusing system for high-intensity proton 
linacs must take the space-charge effect into 
account and (2) an approximate phase motion 
coupled to the transverse motion through the 

space charge is necessary for this design. It 
is also hoped that this approximate phase 
motion could be used as a guidance of a detail- 
ed study on the problem of phase damping.lJ 

The present work is never intended to 
replace detailed numerical calculations, 
There are a number of inevitable limitations 
and some of them may turn out to be serious. 
These limitations are: (1) Particles are 
assumed to be uniformly distributed in either 
an elliptic cylinder for a continuous beam or 
in an ellipsoid for a bunched beam. (2) No 
effects of image charges due to the conducting 
wall are included. (3) All particles are 
assumed to get the same defocusing action 
from the accelerating field. This means that 

studied in detail 5-l are not included. 
the important coupling effects previously (4) 

Longitudinal phase motion is linearized and 
the ellipsoidal shape of the bunch is assumed 
to be maintained throughout the cavity, 
Fields due to neighboring bunches are not 

(5) 

considered. (6) Difference of particle 
velocities in a bunch is neglected. 

II. Potential Due to Space Charge 

For a continuous beam along the z-direc- 
tion whose cross section is an ellipse in the 
x-y plane, the electric field due to a uniform- 
ly distributed space charge is1 

%Y> 4TCE0 -““q-$$q (1) 

where 2rx and 2r are the size of the beam 
cross section, I'is the current, v is the 
(common) velocity of particles, and 

(1/45rc,) - 8.988 x log (m*ohm/seo). 

If a bunch is assumed to be a three-dimension- 
al ellipsoid, 
electric 

again uniformly distributed, the 
field can be expressed approximately 

in the form5 

Ex(Y) 
1 61 = - ' - * x3 .(1-f) r l 

4ne, v 
x(YPx+;) 

X(Y) 

(2) 

EZ 
Here, XR is the bunching factor defined by 

XB = vh/2cr, - 2x/2(Av) (4) 
where 2rz and 2(+) are the longitudinal size 
of the bunch and the corresponding total phase 
spread, respectively, when the wave length of 
the accelernting field is A, The parameter f 
is a function of rz/,jG and its explicit 
forin is 
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f(P) 
L P -L (1 - p tan-l "p 

l-p2 
J- 

5 * 
l-p2 

For p > 1, this is equivalent to 

f(P) = L/l,,LLam~,) 

l-q2 ',m q 

with q s l/p < 1. Also f(p=1) = l/3. 
There are a number of objections to this 

particular choice of the space charge field. 
l'article distributions in the four- or six- 
dimensional phase space are quite unrealistic. 
l,19320 The assumption that the bunch ia 
symmetric about z = 0 (or the synchronous 
point) is not valid in a linac unless the 
phase spread is very small. Also, because of 
magnet misalignments, the longitudinal axis 
of the bunch can be different from the axis 
of the linac and the effect of the image charge 
may become sorious.l* On the other hand, 
fields taken here are linear in coordinates 
and simplify the analysis considerably. For 
three-dinensional cases, any choice other than 
the uniformly distributed ellipsoid makes the 
equation of notion for (x,y,z) nonlinear and 
nonseparable. It must also be noted that 
these particle distributions are self- 
consistent.7**O 

III. Equations for Beam Envelones 

Equations for beam envelopes (or beam 
profiles) were first introduced by Courant and 
Snyder13 in their classical work on the theory 
of the alternating-gradient synchrotron. 
They are best suited to study the motion of a 
particle bunch as a whole rather than the orbit 
of individual particles when the equation of 
motion is linear. This is certainly a very 
good approximation for the transverse motion 
in linacs and could also be used for the longi- 
tudinal phase oscillation with a small amplitude 

It is convenient to take the dimensionless 
parameter g as tne independent variable, 

(an/as) = (c/v,A) = (l/l&A) (5) 
where s is the distance along the longitudinal 
axis and vs = cps is the velocity common to all 
particles. In a linac, it is natural to take 
k equal to the wavelength of the accelerating 
field, making 2 equivalent to the cell number. 
Let u E x, y, or z of individual particles. 
Because of the linear approximation, the 
equation of motion takes the form 

uu = - I& - u . (6) 
The general solution of Eq. (6) is 

u(n) - Aw(n) ~0s [v(n) + $o] (7) 
where A and to are arbitrary constants fixed 
by the initial conditions and 

w" = - Ku-w + (l/& $1 = (l/w)2 . (8) 
If the beam consists of all particles with the 
same value of A but different values of the 
initial phase to, it is represented by an 

ellipse 
(u,'w)~ + (wu' - w'u)* = A2 s F (9) 

in (u,u)) phase space. The largest value of u 
at each point 2, which gives the size of the 
beam in each direction, is then L+,, = h(n) and 
the equation for um is 

"hl = - 
P u + Ad/u3 *u m m (10) 

For a strictly periodic structure, it is always 
possible to find a periodic solution Of Eq. (8). 
For u = x or y, the periodic solution w(n) is 
related to the betatron oscillation parameter'j 
P(s) 

w(n) = dm . (11) 
The ellipse (9) then represents a "matched" 
beam and the largest transverse beam size is 
Awmax * 

When the beam occupies the area nW in 
(u, du/ds) space, 

A* E F = k(8sW) . (12) 
If the system is not periodic, the initial 
beam shape can still be represented by the 
ellipse (9) with initial values w(0) and 
w'(0). The change of the beam size urn(n) are 
then determined by solving Eqs. (8) or (10). 

and 
For transverse directions, um = rx or ry 

'Z(y) = - "x(y)'x(y> + FZ(y)/r:(y) + Kc (13) 

The parameters F, and F are related to beam 
qualities, Eq. (12); in'most cases, they have 
the same value F. The parameters Qx and Qy 
represent the action of quadrupole magnets. If 
the field gradient of the quadrupole ma&met is 
H' (kG/cn), 

QY> 
= + &g psx* 9 + g2 (14) 

where h is in meters and plus (minus) sign is 
for the focusing (defocusing) direction. The 
defocusing (or focusing) action of the accel- 
erating field in linacs can be approximated by 
a single impulse at the center of each cell 
which introduces a discontinuity in rA(y) 

%Y) - r:(Y> + "%YJ 
with 

Q - - (rieEoT~)/(moc2ps) sin 'p (15) 

where E 
is the P 

is the average field on the axis, T 
ransit time factor, and T is the phase 

of each particle, Although the value of p. 
should be different for different particles in 
the beam giving rise to an important coupling 
effect,15'18 it is h ere assumed to be the same 
for all particles in the bunch. Effects of 
space charge are represented by the function 
K C, 

Kc = (eA2)/(moc2) - 1 AL 
4ne, v rx 2 ry (16) 

where 

J - I for continuous beams 
= 3KBI (l-f)/2 for bunched beams. 
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For the longitudinal direction, um = rz 
and 

r" 
Z = - kr2-z z z + F2/r3 + K cz ' (17) 

Kz = (2reEoT~)/(moc 2 - pa) sin 'ps (18) 

K 
CZ 

= CeA2)/tmoc2)(,,1, -$ Xg-rz)/(r,ry) (19) 
0 

The initial shape of the bunch in (~,a') 
phase space can be fixed by r,(O), r;(O), 
and F,, 

FZ(z/rz)2 + (rzzl - r;z)*/Fz = Fz . (20) 

IV. Stability Diagram and Betatron 
Oscillation Parameters 

Then the focusing system is strictly 
periodic, its characteristics are completely 
determined by the stability diagram, For a 
slowly varying system, the investigation of 
the "static" stability diagram is usually an 
essential first step of the design.21 For 
this purpose, it is more convenient to solve 
differential equations for dimensionless 
quantities wx and wy instead of the beam size 
rx and r Y' From Eq. (13), 

W” 
X(Y) = -Qx(y)“x(y) + 1/“$y) + q/bx+wy) (21) 

where the dimensionless parameter q represent- 
ing the space charge effect is given by 

q - (eh2~/Imoc2~(1/4noo)~~ . (22) 

For bunched beam, J is a function of rz and 
^Jrxry (through the dependence on XB and f) as 
well as of the current I. However, the change 
of rz and Js within one period of the system 
is very small so that q can be regarded as a 
constant parameter in the calculation of the 
"static" stability diagram. Betatron oscilla- 
tion parameters S(s), a(s) and u (phase 
advance of the betatron oscillation per 
focusing period) of Courant-Snyder are then 
obtained from the periodic solution w(n), 
w'(n) of Eq. (21) through the relation (11) 
and 

a(s) = - win) w'(n) (23) 
u = Ids/g(s) - (dn/w*(n) for one period. (24) 

The quadrupole system (+)(-)(+)(-) has been 
studied extensively for a wide range of 0 and 
q values assuming the magnet length and the 
$s:;nce between magnets equal to (gsh/2) and 

respectively. 
ar", &own in Figs. 

Part of these results 
1 and 2. 

Several interesting features of the space 
charge effect should be mentioned here. Some 
of them have already been observed by Kap- 
chinskij and Vladimirskij.1 (1) For a given 
set of (R,g), the dependence of the parameter 
wmax on the space charge parameter q can be 
approximately given by 

W max 
= A0 + Alq for small values of q 

= B. + Bl ,& for large values of q 

where A,, A 
B, << Bi. 

$1 Bo* and Bl are all positive and 
t should be noted here that q is 

proportional to the current and inversely 
proportional to the transverse phase space 
area of the beam. [See Zq. (22J.J (2) The 
narameter V-which was introduced by Smith and 

q-w max /W min 

is almost independent of f? 
formula 

Ji - 1.556 - 1.032g + 

1.0 5g.Zl.7, OS 

(25) 

and q. An empirical 

0.691g2 

s!L 0.1 , 
(26) 

is sufficiently accurate for most applications. 
Throughout the system, it is a good approxi- 
mation to take 

rr 
XY 

= (pshW)(w~ax/~) . (27) 

(3) 'The phase advance of betatron oscillations 
par focusing period, n, depends strongly on 
the parameter q. The dependence of p on (g,q) 
is shown in Fig. 3 for 0 = 0. T'ne wave number 
kt - n/2Psh will be quite different from the 
value for q = 0 that was used previously in 
evaluating coupling effects.15317 (4) When 
the length of each quadrupole magnet is differ- 
ent from (psA/2), the increase or decrease in 
g necessary to get the same value of wmax (for 
a given set of n and q) can be estimated from 
the rektion 

h@3, - i/2)= [2/(3-*~)j~/~/$Z (28) 

nhere gs corresponds to the magnet length ~Ssh. 
As an example of possible applications, 

the dependence of max rx (or ry).at 0.75 LieV 
on the value of the quadrupole field gradient 
HI are given in Figs. 4 and 5. larameters 
chosen here correspond approximately to design 
values of the high-intensity (100 - 200 m4) 
injector for AGS at Brookhaven and of the Los 
Alamos linac for its meson physics facilities. 

V. Longitudinal Beam Envelopes - 
Linear Approximation 

In the calculation of the betatron oscil- 
lation parameters, the longitudinal phase spread 
of the bunch (or, equivalently, XB) is assumed 
to be constant. However, this assumption can- 
not be justified in low-energy proton linacs. 
Space charge effects would make the particle 
bunch expand in the longitudinal as well as 
transverse directions. At the same time, there 
will be a compensating effect due to the accel- 
erating field which 's responsible for the 
familiar(velocity)-3 4 damping of the phase 7 
oscillation. In order to find a complete 
picture of the Rccelerated b\lnch, it is then 
;z;t;i;fy to solve.Eqs. (13) and (17) simul- 

. . Y The primary purpose of this study 
is to get a semi-quantitative estimate of space 
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charge effects on the phase damping when the 
total phase spread of the bunch is relatively 
snail as in the Los Alamos linac. 

Parameters chosen for the model linac 
cavity are listed in Table 1. The invariant 
transverse phase space area &Vi is always 
0.1~ cm-mrad. The initial shapes of the bunch 
in the longitudinal phase space are 

0.688 x lf4 (Acp)* - 2 x 0.0633 (Acp)(h) 

+ 1.460 x lo4 (Ayj2 - c.603 x lo+ 

for I = 21.6 m4 and 

0.535 x M4 (Acq~)~ - 2 x 0.175 (Acp>(Au> 

+ 1.926 x lo4 (AY)~ = 0.633 x lo+ 

for I = 100 ImA. Variations of the phase 
spread (half size) and dc along the linac 
are shown in Figs. 6 and 7.' Two curves (A) 
and (B) in Fig. 6, and (C) and (D) in Fig. 7, 
correspond to two different variations of the 
quadrupole strength. #hen the current is 
small, there is a very small amount of "pulsa- 
tion" due to the space charge in the phase 
spread and one can easily find the focusing 
system which produces a desirable variation 
OfJG. The final phase spread is about 
10-129'0 larger thwhe case with no current. 
#itb the choice Jr-r, 2 0.4 cm, the space 
charge effect does-&t seem to change the 
phase damping substantially. The situation 
is entirely different for I = 100 mA. The 
longitudinal motion is unstable at the begin- 
ning and the bunch starts expanding rapidly. 
Unless quadrupoles are properly adjusted to 
take care of the decrease in space charge 
effects, the focusing system becomes too 
strong and &,r goes dovln. Thereafter 
variations of de phase spread and &Et are 
coupled in a complicated manner and.one'sees, 
as in the curve (C) of Fig. 7, a large 
"pulsation" in both longitudinal and trans- 
verse ?irections. It is possible to choose 
the strength of quadrupoles so that the trana- 
verse size ,JE changes smoothly along the 
linac. This ?sJshoxn as curve (D) in Fig. 7 
although the last "pulsation" beyond cell No. 
38 is still not completely eliminated. It 
should be noticed here that variations of the 
transverse size strongly affect the variation 
of the total phase spread. The final phase 
spread could easily be twice of what one 
expects with no current. Also, the final 
phase spread depends not only on the final 
value of d% but on the variation of jr r 
along the linac. For example, if the linzcY 
used here were terminated at cell No. 39, 
the final phase spread would be 22' or 30' 
depending on the choice of the quadrupole 
strength (C) or (D). However, both choices 
give the same final value (0.51 cm) for ,./G. 
In principle, one could substantially reduce 
the "pulsation" of the phase spread (except 

introducing a special - 
variation in rvrv which, however, would be 
quite unrealistyc: The point to be emphasized 

here is that the flexibility in the quadrupole 
focusing system is useful not only for the 
obvious control of the transverse motion but 
also for modifying the phase spread of the 
beam, 
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Table 1 

(I) 
Initial Energy 0.75 XeV 
Final Energy 9.47 IheV 

(II) 
0.75 KeV 
9.85 MeV 

Energy Gain 
per Length -88-l .48 I,:eV/n .YO-1.52 bIeV/m 

Synchronous Phase -28.8' -25.~~~ 
Peak Current 21.6 IOA 100 mA 
Transverse Size 

Major 0.48-0.50 cn! 0.55-0.71 CD 
Iviinor 0.36-0.38 cm 0.41-0.52 cm 
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Total ?hase Spread 
Initial 17.00x2 20.00x2 
Final 6 50(5 70)*x2 9 8'(6 @)*x2 . . . . 
Max imum 17.0° at 26.5O at 

0.75 MeV 1.16 bfeV 

* Corresponding values when the current is 
zero. 

J2.-0 
/ 

Fig. 1. Maximum betatron oscillation parameters 
wmax of (+)(-)(+)(-) quadrupole systems as a 
function of the space-charge parameter &$? 
for fi = 0 and g = 0.6 - 1.8. For definitions of 
g, 0, and q, see Eqs. (14), (15), and (22), re- 
spectively. The maximum transverse size rx 
(or ry) of the beam is wmax d-where 
BsW is the invariant phase space area. 

1 

1.6 

Fig. 2. Same as Fig. 1 with 0 = 0.04 and g = 1.0 - 1.8. 
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100 LL (degrees) 7 

%(y) (4 

0.6 _ 

0.5 - 

0.b _ 

0.3 

0.2 - 

0.1 - 

0 4 

Fig. 4 

H' (kC/crn) 
6 6 10 I I , I I I 

v/c - 0.04 

Invariant Phase space Area 
- 0.1 r cm-mad 

E - 1.265 Wlm 
0 

T - 0.59 

rg - -0.45 

I\ : No current 

B : 20 M\, continuous beam 

c : 20 oha, phase spread 3o” 

Fig. 4. Maximum transverse dimensions rx (or ry) 
near the injection energy (0.75 Me\‘) as a 
function of H’ , the quadrupole field gradient. 
Parameters are similar to those for the pro- 
posed Los Alamos linac. 

Fig. 3. The phase advance p (degrees) of the betatron 
oscillation per focusing period 2Psh for Q = 0 
and g = 0.6 - 2.0. The wave number kt of the 
transverse motion is kt = (pL/2ps A). 
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1nvariene Phase space Area 
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ED - 1.6 NV/m 

T - 0.59 

m - -0.45 

A : NO cur‘re"t 

B : 100 mA, continuous beam 

C : Phase spread 60'. 100 cd 

0 : Phase spread 400, 100 mt? 

B 
ill-.::-::I__= 

H’ (kG/cm) 

6 7 10 
4 I I I 
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Fig. 5. Same as Fig. 4 for a higher current (100 mA) 
which corresponds to the new AGS injector 
linac at Brookhaven. 

15 

10 

5 

.5 

.4 

.3 

0 

r 
‘base (degrees) 

current : 21.6 me4 

Synchronous 
Phase : -28.LP 

Invariant Phsse space Area : 0.17 cm-arac! 

&Q (cm) 

(6) 

(A) 

Cell Number 

20 40 60 

I I I I I I 

Fig. 6. Variations of the phase spread (half size) and 
J?!& along the model linac cavity. For ma- 
chine parameters, see Case (I) of Table 1. 
Curves (A) and (B) correspond to two different 
quadrupole strength distributions. 
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30 rnase CdegreesJ 

20 

t-’ ’ $1 

A 
: ’ 
I’ \ \ 

,’ I \ 

10 

v$T-+ 
‘- (0) 

.6 

current : 100 r.4 

~y,cronous 
: -25.80 

20 40 60 
1 I I 

Fig. 7. Same as Fig. 6 for a higher current (100 mA). 
See Case (II) of Table 1. 
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