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Summary. A general computer program has
been used to calculate the stability diagram
for (+)(-)(+)(-) quadrupole arrangements when
the space charge is uniformly distributed in
an elliptic cylinder or an ellipsoid. Linear-
ized equations for longitudinal and transverse
envelopes of the bunch have been solved simul-
taneously in order to find the velocity
dependence of the phase damping.

I. Introduction

In the past few years, a number of studies
have been made for the effects of space charge
in a bean transport system and in a low-energy
proton linear accelerator.-~ Most of these
investigations are, however, primarily on the
longitudinal phase stability in proton linacs
and the limiting current due to the reduction
of the phase stable area,

For space-charge effects on the trans-
verge motion_of the particle, Kapchinskij and
Vladimirskijl assumed a uniformly distributed
elliptic cylinder and calculated betatron
oscillation parametsrs for guadrupole focus-
ing systems in proton linacs, Catura4 and
CrandalllO also used a cylinder for their
numerical studies of transverse motions assum-
ing uniform as well as non-uniform charge
distributions, Their results are, however,
confined to drift spaces with essentially no
focusing elements involved., A uniformly
distributed ellipsoidal bunch has been assumed
by Lapostolle5 in his formulation of space
charge effects on longitudinal and transverse
motions in a linac and a method for applying
this formalism in a numerical computation has
been discussed in detail,

It is quite obvious that the motion of a
particle bunch in a proton linac under the
influence of a strong space-charge force is
quite complicated and that its entire picture
could not be found without performing a detail-
ed numerical calculation. This would certainly
involve an orbit tracing of hundreds of farti—
cles or equivalent rings and disks.5’lo’ 1
Bven for the study of the longitudinal phase
motion alone, it is not at all clear whether
one can simply represent tihe transverse motion
by one or itwo constant parameters.’»(»9 For
a given focusing system, the transverse
envelope of the particle bunch is affected by
its longitudinal size so that, at least in
principle, one cannot control the transverse
motion without first knowing the phase motion
throughout the linac. The work reported here
was motivated by the belief that (1) the design
of a focusing system for high-intensity proton
linacs nust take the space-charge effect into
account and (2) an approximate phase motion
coupled to the transverse motion through the

space charge is necessary for this design. It
is also hoped that this approximate phase
motion could be used as a guidance of a detail=-
ed study on the problem of phase damping.14
The present work is never intended to
replace detailed numerical calculations,
There are a number of inevitable limitations
and some of them may turn out to be serious.
These limitations are: (1) Particles are
assumed to be uniformly distributed in either
an elliptic cylinder for a continuous beam or
in an ellipsoid for 2 bunched beam. (2) No
effects of image charges due to the conducting
wall are included, (3) All particles are
assuned to get the same defocusing action
from the accelerating field. This means that
the important couflin effects previously
studied in detaill5-18 are not included. (4)
Longitudinal phase motion is linearized and
the ellipsoidal shape of the bunch is assumed
to be maintmined throughout the cavity. (5)
Fields due to neighboring bunches are not
congidered. (6) Difference of particle
velocities in a bunch is neglected.

IT. Potential Due to Space Charge

For a continuous beam along the z-direc-
tion whose cross section is an ellipse in the
x~y plane, the electric field due to & uniform-
ly distributed space char?e igl

S 41 x(y) (
z = 1)

X nE. V T T_+T

(y) " 4 o x(y)(vx yj

where 2r, and 2r, are the size of the bean
cross section, I is the current, v is the
(common) velocity of particles, and

(1/4ney) = 8.988 x 107 (m-ohm/sec).

If a bunch is assumed to be a three-dimension-
al ellipsoid, again uniformly distridbuted, the
electric field can be expressed approximately
in the formd

1
Ex(y) - dne,

61 1
Vo Xp () Ty <)
B x(y)V'x ry(z)y

1 61 1.
Ez = Ane, v xB £ rr z - (3)
Xy
Here, Xy is the bunching factor defined by
Xp = vA/2cr, = 2n/2(8p) (4)

where 2r, and 2(Ap) are the longitudinal size
of the bunch and the corresponding total phase
spread, respectively, when the wave length of
the accelerating field is A, The parameter f
is a function of rzﬁfrxry and its explicit
form is
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2
(1 - —=2 tan~t l; ).
2

1-p

1
f(p) = 2
1-p

For p > 1, this is equivalent to

2 2
N Jm1+‘£1-q _1>

1-9° \\ﬁ_qz

with ¢ = 1/p < 1, Also f(p=l) = 1/3.

There are a number of objections to this
particular choice of the space charge field,
Particle distributions in the four- or six-
dimengional phase space are quite unrealistiec.
The assumption that the bunch is
symnetric about z = O (or the synchronous
point) is not valid in a linac unless the
phase spread is very small, Also, because of
magnet misalignments, the longitudinal axis
of the bunch can be different from the axis
of the linac and the effect of the image charge
may become serious.12 On the other hand,
fields taken here are linear in coordinates
and simplify the analysis considerably., For
three-dimensional cases, eny choice other than
the uniformly distributed ellipsoid makes the
equation of motion for {(x,y,z) nonlinear and
nonseparable, It must also be noted that
these particle distributions are self-
consistent./:

’ ’

I1I.

Bquations for beam envelopes (or beam
profiles) were first introduced by Courant and
Snyder13 in their classical work on the theory
of the slternating-gradient synchrotron,

They are best suited to study the motion of a
particle bunch as a whole rather than the orbit
of individual particles when the eguation of
motion is linear. This is certainly a very

good approximation for the transverse motion

in linacs and could also be used for the longi-
tudinal phase oscillation with a small amplitudae

It is convenient to take the dimensionless
parameter n as tne independent variable,

(dn/ds) = (c/vgh) = (1/Bg)) (5)

where 8 is the distance along the longitudinal
axis and vy = cBg is the velocity common to all
particles., In a linac, it is naturasl to take

A equal to the wavelength of the accelerating
field, wmaking n equivalent to the cell number,
Let u=x, y, or z of individual particles.
Because of the linear approximation, the
equation of motion takes the form

ut o= - Ku cou .
The general solution of Eq. (6) is
u(n) = Aw(n) cos [y{n) + ol (7

where A and §, are arbitrary constants fixed
by the initial conditions and

W= - Kgew + (1/w)3, ¢ = (1/w)2 . (8)

If the beam consists of all particles with the
same value of A but different values of the
initial phase y,, it is represented by an

Egquations for Beam Envelopes

(6)
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ellipse
(wm) + (wut - wu)? =a? =7 (9)

in {u,u') phase space. The largest value of u
at each point n, which gives the size of the
bean in each direction, is then uy = Aw(n) and
the equation for up is
4,3
VI=_ O
w' Ku +A /u2 (10)
For a strictly veriodic structure, it is always
possible to find a periodic solution of Eq. (8)
For u = x or ¥y, the periodic solution w(n) is
related to the betatron oscillation parameter13

B(s)
wn) = IR - (11)

The ellipse (9) then represents a "matched”
beam and the largest transverse beam size is

Awpgyx. When the beam occupies the area n¥W in
(u, du/ds) space,
A% = F = A(p ) . (12)

If the system is not periodic, the initial
beam shape can still be represented by the
ellipse (9) with initial values w(0) and
w'(0). The change of the beam size um(n) are
then determined by solving Egs., (8) or (10).

For transverse directions, u, = ry Or I
and

H 2
Tr(y) T 7 Yx(y) x(y) * FX(y)/ri(y) + K, (13)

The parameters F, and F, are related to beam
qualities, Bq. (12); in'most cases, they have
the same value F. The parsmeters Qy and
represent the action of guadrupole magnets’., If
the field gradient of the guadrupole magnet is
H' (kG/cn),

y

, H! 2 _, 2
U(y) " T3130 M =t (14)

where A is in meters and plus (minus) sign is
for the focusing (defocusing) direction. The
defocusing {or focusing) ection of the accel-
erating field in linace can be approximated by
a single impulse at the center of eech cell
which introduces a discontinuity in ri(y)

] — 1
Tx(y) T Tx(y) T Px(y)
with

Q= - (neEoTA)/(mocZBs) sin g (15)
where E, is the average field on the axis, T
is the %ransit time factor, and ¢ is the phase
of each particle, Although the value of
should be different for different particles in
the beam giving rise to an important coupling
effect,15'15 it is here assumed to be the same
for all particles in the bunch. Effects of
space charge are represented by the function
Ke»

2 2y 1 43 1
K = A
e = (eA%)/(m ) Ime, v To v T,

(16)
where

J = I for continuous beams
= 3XgI (1-f)/2 for bunched beams.
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For the longitudinal direction, w, =r,
and
. 2,3
ry = - K+ Fz/rz + K, (17)
. ; 2 .
K, = - (2neE01x)/(moc Bs) sin g (18)

2 2y, 1 6L ..
oy = @00/ ek & xpen, ) (nm) (19)
The initial shape of the bunch in (z,z')

phase space can be fixed by r,(0), ré(O),

and F,,

(20)

2 2,
Fz(z/rz) + (r, 2" - rlz) /FZ =F, .

IV, Stability Disgram and Betatron

Oscillation Parameters

ithen the focusing systen is strictly
periodic, its characteristics are completely
determined by the stability diagram. For a
slowly varying systen, the investigation of
the "static" stability diegram is usually an
essential first step of the design. For
this purpose, it is more convenient to solve
differential equations for dimensicnless
quantities wy and w, instead of the beam size
ry and vy, From Eq. (13),

Yi(y) ™ ey )"x(y) * l/W?C(y) * q/(wxwy) (21)

where the dimensionless parameter q represent-
ing the space charge effect is given by
2 2 J 1

a = (er)/(m o )(1/4ne°)§7 s . (22)
For a bunched beam, J is a function of r, and
Jixr (through the dependence on Xp and f) as
well”as of the current I. However, the change
of r, and ,/ryr, within one period of the system
is very snall Bo that g can be regarded as a
constant parameter in the calculation of the
"static” stability diagram. Betatron oscilla-
tion paraneters f(s), «(s) and u (phase
advance of the betatron oscillation per
focusing period) of Courant-Snyder are then
obtained from the periodic solution w(n),
w'(n) of Eq. (21) through the relation (11)
and

a(s) = - w(n) w'(n) (23)
u = fas/B(s) = fdn/w?(n) for one period. (24)

The quadrupole system (+)(-)(+)(~) has bsen
studied extensively for a wide range of Q and
q values assuming the ragnet length and the
distance between magnets equal to (BgA/2) and
(Bgr), respectively. Part of these results
are shown in Figs. 1 and 2,

Several interesting features of the space
charge effect should be mentioned here. Some
of them have already been observed by Kap-
chinskij and Vladimirskij,l (1) For a given
set of (Q,g), the dependence of the parameter
Wnax OR the space charge parameter g can be
approximately given by
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Woax = Ao + Alq for small values of q

= Bo + Bl Ja for large values of g

where AO, A¢, By, and By are all positive and
B, << By. %t should be noted here that g is
proportional to the current and inversely
proportional to the transverse phase space
area of the beam. [See Ig. (22).] (2) The
parameter y which was introduced by Smith and
Gluckstern,

/W {25)

is almost independent of ( and q.
formula
¢ = 1.556 - 1.032g + 0.691g”
1.0<gl1l.7, 02aXo0.1,

is sufficiently accurate for nost applications.
Throughout the system, it is a good approxi-
mation to take

R OICAWI

=W .
max’ min

An empirical

(26)

(27)

{3) The phase advance of betatron oscillations
per focusing period, u, depends strongly on
the parzmeter q. The dependence of u on (g,q)
is shown in Fig, 3 for 0 = 0. The wave number
k4 = u/2fgA will be quite different fronm the
value for q = 0 that was used_previously in
evaluating coupling effects,”»1 (4) When
the length of each guadrupole meagnet is differ-
ent from (Bgr/2), the increase or decrease in
g necessary to get the same value of wpay (for
a given set of () and q) can be estimated fron
the relation

(e /e, = 1/2)= [2/(3-2¢)" Y4 /2 (28)

where 8¢ corresponds to the magnet length eBgh.
As an example of possible applications,
the dependence of max Ty (or r,) at 0,75 heV
on the value of the guadrupole” field gradient
H' are given in Figs. 4 and 5. Parameters
chosen here correspond approximately to design
values of the high-intensity (100 ~ 200 mA)
injector for AGS at Brookhaven and of the Los
Alamos linac for its meson physics facilities.

V. Longitudinal Beam Envelopes -
Linear Approximation

In the calculation of the betatron oscil-
lation parameters, the longitudinal rhase spread
of the bunch (or, equivalently, Xp) is assumed
to be constant. However, this assumption can-
not be justified in low-energy proton linacs,
Space charge effects would make the particle
bunch expand in the longitudinal as well as
transverse directions. At the same time, there
will be a compensating effect due to the accel-
erating field which is responsible for the
familiar (velocity)=3/4 damping of the phase
oscillation. In order to tind a complete
picture of the accelerated bunch, it is then
necessary to solve Egs. (13) and (17) simul-
taneously. The primary purpose of this study
is to get & semi~quantitative estimate of space

PAC 1967



OHNUMA AND VITALE: SPACE-CHARGE EFFECTS ON QUADRUPOLE FOCUSING SYSTEM 597

charge effects on the phase damping when the
total phase spread of the bunch is relatively
small as in the Los Alamos linac,

Parameters chosen for the model linac
cavity are listed in Table 1. The invariant
transverse phase space area [ W is always
0.1lx cn-mrad. The initial shapes of the bunch
in the longitudinal phase space are

0.688 x 1074 (89)% - 2 x 0.0633 (o) (Ay)

+ 1,460 x 108 (87)2 = €.603 x 1070
for I = 21,6 mA and

0.535 x 1074 (85)% - 2 x 0.175 (&¢)(Ay)

+1.926 x 10% (8y)% = 0.633 x 1072

for I = 100 mA, Variations of the phase
spread (half size) and ,/r,r_along the linac
are shown in Figs, 6 and 7.” Two curves, (4)
and (B) in Fig. 6, and (C) and (D) in Fig. T,
correspond to two different variations of the
quadrupole strength, When the current is
snall, there is a very small amount of "pulsa-
tion" due to the space charge in the phase
spread and one can easily find the focusing
system which produces a desirable variation
of ,/ryr,. The final phase spread is about
10-12%" larger than the case with no current.
With the choice ,fr,r. X 0.4 cm, the spece
charge effect does not seem to change the
phage damping substantially, The situation
is entirely different for I = 100 mA. The
longitudinal motion is unstable at the begin-
ning and the bunch starts expanding rapidly.
Unless quadrupoles are properly adjusted to
take care of the decrease in space charge
effects, the_focusing system becomes too
strong and JEXr goes down, Thereafter
variations of the phase spread and ,/ryr are
coupled in a complicated manner and one” sees,
as in the curve {(C) of Fig. 7, a large
"pulsation" in both longitudinal and trans-
verse directions, It is possible to choose
the strength of quadrupoles so that the trans-
verse size kar changes smoothly along the
linac. This 1s”shown as curve (D) in Pig. 7
although the last "pulsation" beyond cell No.
38 is still not completely eliminated. It
should be noticed here that variations of the
transverse size sitrongly affect the variation
of the total phase spread, The final phase
spread could easily be twice of what one
expects with no current, Also, the final
phase spread depends not only on the final
value of fr,r, but on the variation of ,/ryr
along the linac. For example, if the linac
used here were terminated at cell No. 39,

the final phase spread would be 22° or 500
depending on the choice of the guadrupole
strength (C) or (D). However, both choices
give the same final value (0,51 cm) for ,/ryr..
In principle, one could substantially reduce
the "pulsation" of the phase spread (except
the first one) by introducing a special
variation in err which, however, would be
quite unrealistic, The point to be emphasized

here is that the flexibility in the quadrupole
focusing system is useful not only for the
obvious control of the transverse motion but
also for modifying the phase spread of the
beamn,
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Table 1
(1) (I1)
Initial Energy 0,75 keV 0.75 LeV
Final Energy 9,47 NeV 9.85 MeV

Energy Gain
per Length
Synchronous FPhase
Peak Current
Transverse Size
Major 0.
Minor 0

.88-1.48 LeV/m .90-1.52 MeV/m
-28,8° -25.8°
21.6 mi 100 mh

0.55-0,71 cm

-0,%8 cm 0.,41-0.52 cm

48-0,50 cm
36
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Total Phase Spread 25 o g = 1.0 -
Initial 17,0%x2 20,0%x2
Final 6.59(5.7°)*x2 9.8°(6,6°)*x2 Q - 0.06
Maximum 17.0° at 26,59 at ’
0.75 MeV 1.16 MeV
¥ Corresponding values when the current is 20
zZero, 20 L 4

25
g = 0.6

20

o
o
(=
[--]
(=]
-1
" - —
o~ N (=]
| | |
- —
“ = s
\\:
- - - -
» - IS W
] L I

Jorz
1.6 0 1.0 2.0 3,0
. 1 . . 1
1.8
’ 7 Fig. 2. Same as Fig. 1 with € = 0.04 and g = 1.0 - 1.8,
Ja7z
0 1.0 2,0 3.0

Fig. 1. Maximum betatron oscillation parameters
Wmax of (+)(-)(+)(-) quadrupole systems as a
function of the space-charge parameter v q/2
for @ =0 and g = 0.6 - 1.8. For definitions of
g, 2, and g, see Eqgs. (14), (15), and (22), re-
spectively. The maximum transverse size rx
(or ry) of the beam is Wmax VA(B W) where
BsW 1s the invariant phase space area.
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100

80

60

40

20

w (degrees) —_—

g = 2.0

. 3. The phase advance p (degrees) of the betatron
oscillation per focusing period 28gx for 2 =0
and g = 0.6 - 2.0. The wave number ki of the
transverse motion is k¢ = (u/28g ).

vic = 0,04

Invariant Phase Space Area
= (0.1 r cm-mrad

E = 1,265 MV/m
©

T = 0.59
T (y) (em) ® = -0.45 B
A : No current
0.6 B : 20 mA, continuous beam
. [~ C : 20 mA, phase spread 30° 7
0.5 |- .
C
0.4 [ i
B
0.3 - A \ -
0.2 -
0.1 | Fig. & E
H' (kG/cm)
° 4 6 8 10
1 1 i L 1 Il
Fig. 4. Maximum transverse dimensions rx (or Ty)

near the injection energy (0.75 MeV) as a
function of H', the quadrupole field gradient.
Parameters are similar to those for the pro-
posed Los Alamos linac.
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600
- Tx(y) (o)
vle = 0.04
Invariant Phase Space Area
0.9 = 0.1 7 cm-mrad
i D E = 1.6 W/n
T = 0,59
C o = ~0.45
0.8 |
A : No current
B : 100 mA, continuous beam
C : Phase spread 60°, 100 mA
0.7 L D : Phase spread AOO, 100 mA
0.6 }-
0.5
B
0.4 |
A
0.3 +
0.2 |.
0.1 |
H' (kG/cem)
4 6
° i 1 } ? 1 1P
Fig. 5. Same as Fig. 4 for a higher current (100 mA)

which corresponds to the new AGS injector
linac at Brookhaven.

15

10

| Phase (degrees)

Current : 21,6 mA

Synchronous
Phase s -28.

8°

Invariant Phase Space Area : 0.17 cm-mrad

Cell Number

20 40 60
X 1 1 1 1 Il

Fig. 6. Variations of the phase spread (half size) and

VTyry along the model linac cavity. For ma-
chine parameters, see Case (I) of Table 1.
Curves (A) and (B) correspond to two different
quadrupole strength distributions.
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30

20

10

~ rnase {(degrees)

Current ;: 100 mA

Synchronous
Phase : -25,8°

T r
X'y (cm) Invariant Phase Space Area : 0,lr cm~mrad

Cell Number

Fig. 7. Same as Fig. 6 for a higher current (100 mA).

See Case (II) of Table 1.
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