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Summary 

A technique for evaluating the radial and longitudinal 
forces present within a moving volume of charge is pre- 
sented. For an assigned array, based on a given set of 
initial conditions, the bunch is replaced by a volume 
mesh comprising a series of cylinders and surrounding 
annulii. The coordinates of these elements are moni- 
tored to provide changing charge distribution and bunch 
shape information during the trajectory. Owing to the 
rigorous design requirements of the MIT high duty factor 
linear accelerator, studies have concentrated on the 
problems of attaining monochromatic bunches of small 
dimensions suitable for injection into the accelerator 
waveguide system. I Concomitantly, voltage depression 
effects and reduction of space charge fields due to the 
presence of conducting walls are included in this pre- 
sentation. 

Introduction 

In general, the limitations imposed by the use of 
multi-disc cylindrical models for electron bunch analyses2 
are too restrictive for the detailed study of critical 
regions such as the bunch processing and drifting zones 
immediately prior to acceleration. A more realistic 
analysis requires the evaluation of such effects as: 

(4 “oil-canning” of the discs due to radial variation 
of the longitudinal momentum. (While application of the 
axial longitudinal space charge fields to the peripheral 
particles introduces little error in the central region of 
a bunch, it becomes less valid as the terminal regions 
are approached.) 

(b) changing radial charge density within the bunch. 
(c) distortion of initially assumed geometries into 

irregular patterns. 
(d) radial dependency of external stimuli, e.g., 

the radial variation of longitudinal electric field strength 
over the aperture of prebunching cavities. 

(e) the presence of surrounding conducting media 
from the point of view of longitudinal space charge field 
reduction as well as potential depression within the 
bunch. 

In principle, by assuming symmetry of rotation, 
manv of these features can be evaluated by adopting a 
mul&-annular model, the expanding and contracting 
elements of which have independent longitudinal and 
radial migratory freedom. 

Description of Technique 

Assumptions and Assignment of Charge Locations 

The electron bunch is divided into a multiplicity of 
cylindrical (representing the central core) and annular 
volumes, the radial and longitudinal dimensions of which 
are determined from the initially assigned bunch shape 
and volume charge density distribution and from the 
gauge of the mesh. Although a regular bunch geometry 

is not necessary, it affords a convenient means of (a) 
prescribing the starting conditions for the mesh spatial 
coordinates, velocity components, and charge containment, 
and (b) testing the accuracy of the program by comparing 
the first set of field computations against known radial and 
longitudinal distributions. (This is discussed further in a 
later section. ) 

The analysis assumes that rotational symmetry is 
conserved about the beam centerline and that the charge 
density distribution in the azimuthal direction remains 
constant. Although not essential, for a prescribed charge 
distribution and bunch geometry, it was found convenient 
(especially for energy spectra evaluation) to choose the 
mesh initial coordinates so that volume elements con- 
tained equal charge. For example, in cylindrical or 
spheroidal bunch models of uniform charge density, when 
using a mesh of NR radial and NZ equal longitudinal 
divisions, the radial boundary dimensions (rh) are given 
by 

rf = a (A.j1/2 , 
n n = O,l,...NR, 

where “al’ is the maximum radial dimension of either 
model. The corresponding average radii (rhn) are 
given by 

r’ mn 

= 2a n3j2 -(n - 1)3’2] /3(NR)1’2, 
C 

n = 1,2,. . .NR 
/ 

(The charge per element for the spheroidal model is, of 
course, 3/2 that of the equivalent circumscribing cylinder 
of the same total charge.) For spheroidal bunches, 
volume elements which are not fully contained within the 
boundary 

(r’/a)2 + (z’/c)2 = 1 

are treated as follows: When rhm 5 a [l - (z&/c)23 I/2, 
the partial mesh charge volume is computed and assigned 
to this r~ln value. When rhn > a [l - (zfnn/c)2]1/2, 
the charge is allocated proportionally to the neighboring 
elements. For the work reported in this paper, the charge 
distribution within individual elements was assumed to be 
uniforms 

Dependency of Field Evaluation on Mesh Dimensions 

When computing the radial and longitudinal field 
components (E$ and EL) in the rest frame at a location 
W tnnp z~m) representing a given annular element, the 
radial self field and the components of the fields extend- 
ing from all other charge volumes are appropriately 
summated. A rigorous solution of the field distribution 
for an annular volume of charge involves lengthy evalu- 
ation of expressions containing elliptic integrals of the 
first, second, and third kindsfor Et and numerical 
evaluation of double integrals for E$. (See Appendix. ) 
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Consequently, since a mesh of X volume elements re- 
quires N* sets of calculations per step in solving the 
equations of motion, the replacement of these annular 
volumes by simpler geometric distributions was investi- 
gated so that computation time and complexity could be 
reduced without introducing significant errors. Typical 
examples are shown in Figs. l(a) and (b) where the radi- 
al and longitudinal field components due to annular ele- 
ments of various mesh dimensions are compared against 
idealized surface and line distributions. These diagrams 
pertain to a radial mesh location of n = 3 in a model hav- 
ing hTR = 5; and the Ar’ : AZ’ ratios are based on a con- 
stant value of Ar’. For the sphere, 

and EL components within a 5 x 10 mesh, representing a 
lo-mm diameter sphere and a prolate spheroid with a 
lo-mm minor axis (2a) and a 30-mm major axis (2~) arc 
shown in Figs, 2(a) and (b), respectively. The indicated 
rest frame values have been extracted directly from the 
space charge subroutine of the multi-phase orbit program 
for the linear accelerator. As a result, the units are in 
El/Q RIV/m/coulomb multiplied by a constant equal to 
35 x 10-11. The actual distribution for these spheroidal 
bunches, as obtained from the rest frame formulae rcfer- 
enced in the Appendix, are given by: 

The radial field comparisons of Fig. l(a) indicate 
that the use of a ring or washer as a replacement source 
for the annular volume is satisfactory for field locations 

E’ E’ 
z= 2’ 

and r r’ -~ Q 
4 71 

4 (2) 
4 71 

remote from the annulus boundaries. As the field coor- 

Eoa2 coa2 

dinates approach a ring source, however, serious errors i.e., linear functions having maxima (for the above ex- 
are introduced, especially for mesh dimensions of Ar’ ample, at a = 0.005 m) of 
< AZ’. On the other hand, thin cylindrical shells (not 
shown on this figure) of radius r&, having the same E’ E’ 
(AZ’) dimensions as the mesh, provide E$ fields which “EL := 3.396 x lo8 MVjm/coulomb (3) 
are in excellent agreement with all annular element Q Q 
field distributions external and up to the radial bound- 
aries rh and rAWI. For field coordinates within the an- 
nular volume. a thin washer of annular breadth 0% - r:-1) 
located in the’plane of r’ 

II LI A. 
mn, provides an acceptable re- 

The graphs of Fig. 2(a) compare the space charge pro- 
gram computed values with the corresponding Equation (2) 
values multiplied by the constant 35 X IO-II, (e. g., actual 
maxima (El/Q) X 35 X lo-I1 = 0.1259). For the (a/c = 
l/3) prolate spheroid, placement charge distribution for E& calculations. Apart 

from markedly reducing the computation time, these 
techniques avoid singularities and enable cross-over (or E’ 
mesh overlap) occurrences to be evaluated. __ 1.171 X lo8 ‘,‘- 

Q” 
The annular volume off-axis EL field comparisons giving (4) 

of Fig. l(b) indicate that replacement ring geometry is 
satisfactory for the indicated range of mesh dimensions, E’ -11 
for field locations greater than 3 A z’ from the source. 

-5 x 35 x 10 
Q 

= 0.0410 “,I 

(For mesh ratios of Ar’ > AZ’ even shorter distances are 
acceptable.) For closer field locations, greater accu- and 

racy is provided by a washer geometry. Equations per- E’ 
taining to the Fig. 1 distributions have been included in AC=. 

w 
1602x10d& 

the Appendix. a 

giving (5) 
In evaluating the on-axis fields, it was unnecessary 

to idealize the axial cylindrical charge volumes since E’ 

the exact solution, applicable to any mesh dimension, 
--r- x 35 x 10-11 = 0.0561% 
9 

can he readily obtained from the expression, 

AE’ = 4 0 X 
Z 2rrcoA;At’R; 

r 1 1 - 

[[g +(i’-i~)~2-~+1F’-2;)2]2-li’-(;~+ii1-~ilJ (1) 
where <’ = ~6 and 4 is the laboratory frame longitudi- 
nal field coordinate normalized to the accelerator RF 
free space wavelength (A,); RI and A 1’ = [i - <i define 
the normalized boundaries of a cylindrical source in the 
rest frame. 

Comparison of Actual and Computed Field Distributions 

Several spheroidal models of uniform charge density 
were used to check the accuracy of the assignment of 
mesh dimensions (based on equal charge containment) as 
well as the initial values of radial and longitudinal fields .-. 
existing within individual elements. The computea r;, 
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i.e. , these field components are also linear functions 
having maxima at the terminations of the axes. The 
Fig. 2(b) graphs compare the field distributions obtained 
from Equations (4) and (5) with the computed data for the 
m-olate soheroidal bunch. Bearing in mind that the mesh 
field val;es refer to the coordinatg positions, r&, z& , 
it can be seen that with this (5 X 10) mesh the promam 
provides a satisfactory representation if errors 0: a few 
percent are acceptable. 

To more accurately reproduce actual beam conditions, 
several non-uniform charge dersity models were consid- 
ered. As an example, Fig. 3(a) illustrates the more prac- 
tical non-uniform charge distribution given by 

pf = p; 
[ 
1 - (r’/a)2 - (z’/C)2 3 

for a prolate spheroidal bunch of a/c = l/3. The resulting 
field distributions along the major and minor axes are 
compared with the corresponding uniform charge density 
example of Fig. 2(b) for the same contained total charge. 
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Space Charge Orbits 

The radial and longitudinal space charge forces were 
transformed from the rest frame to the laboratory frame 
and applied simultaneously to the equations of motions of 
all mesh coordinates. The resulting system of differen- 
tial equations was solved numerically in the time domain2 
using a fourth-order Runge-Kutta routine. A simplified 
form of these laboratory frame equations, including the 
effect of a magnetic lens (Bz) can be expressedasfollows: 

i: = (eE’r/moy2) - r(eBz,/2mo)2/y2 - r$/r (7) 

Also as 

Substituting for i: and normalizing r (= Rho) we obtain 

Assuming p and y dependent on the initial electrostatic 
potentials, and for r << i, 

dY _ ‘oEz dwt 21r 
--0.’ d{ =p dt 

For more accurate analysis, 

dY - --- 
(1 ( 

t YE’@ 
r dt 1 forE Q =0 

and 1 
2 .2 i2+ E2+ r Q 

(10) 

(12) 

Presence of Conducting Walls 

The electrostatic potentials and longitudinal space 
charge fields within the bunch are modified due to the 
presence of conducting media. These effects were in- 
vestigated for several bunch geometries, using different 
diameter injection system drift tubes. 

It was assumed that the surrounding concentric walls 
were of infinite conductivity and that equilibrium condi- 
tions had been established between the bunch and the 
image charges. The rest frame potential distributions 
and gradients in free space, due to particular bunch ge- 
ometries, were computed at the location of the wall 
(r ’ = b). Table I shows this data for three ratios of 
drift tube to bunch diameter (2b/2a) and several spheroi- 
dal bunch geometries of the same uniform charge density 
and equal ‘a’ dimension. The center of the bunch is 
referenced at z1 = 0, r’ = 0. Free space potential dis- 
tributions and gradient curves at r’ = b, based on equal 
bunch charge and the same ‘a’ dimension, are shown 
in Figs. 4(a) and (b) for spheroidal bunch dimensions of 
a/c equal l/3, 1 and 3. 

The free space potentials within the charge volume 
were depressed to establish a zero potential boundary 
condition at the wall (all longitudinal field components 

reduce to zero at the wall). These results, as well as 
the free space and wall modified longitudinal space 
charge fields, are compared in Table II for equal uni- 
form charge density (pk) and the same ‘a’ dimension. 
Table II also records the longitudinal and radial varia- 
tion of the wall modified EL field and the electrostatic 
potential within electron bunches of differing shape, for 
drift tube to beam diameter ratios of 1.2, 2 and 10. 

It can be noted that the potential depression effect 
results in an initial spread of particle velocities through- 
out the bunch such that the highest Y, occurs at the bunch 
periphery (r’ = a, z’ = 0), intermediate values are present 
at the axial terminations (r’ = 0, z’ = hc), and the lowest 
Y, occurs at the center of the charge volume (r’ = 0, 
z’ = 0). As the tube to bunch diameter ratio increases, 
the potential depression also increases, but the radial 
variation of particle velocity is reduced. The b/a = 1.2, 
a/c = l/3 example has been used in Fig. 4(c) to illustrate 
the radial dependency of the voltage depression and the 
energy conversion relationship. As a quantitative cx- 
ample, we can compare an oblate (a/c = 3) and a prolate 
(a/c = l/3) spheroidal bunch, each having an ‘a’ dimen- 
sion of 5 mm and a surrounding drift tube of 12 mm di- 
ameter. The Table II data indicates that at z’ = 0, the 
oblate bunch will be depressed 1890 volts/nanocoulomb 
on axis and 426 volts/nc at r’ = a. The corresponding 
values for the prolate bunch are 543 and 143 volts/nc. 

An example of the marked reduction in the EL space 
charge fields along the length of the bunch, due to the 
presence of conducting walls, is shown in the comparison 
of Fig. 4(d). In the above analysis, when evaluating the 
wall modified EL distributions, small first order pertur- 
bation was assumed (negligible charge migration within 
the bunch), and the vector potential contribution was 
disregarded. 

Allowing for the above effects, preliminary results 
from the space charge program indicate that the achieve- 
ment of low velocity spread bunches of small dimension 
is strongly dependent upon suitable choice of b/a. 
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Appendix 

Notation: For convenience in expressing the field com- 
ponents , E,, and Er , due to an annular, uniformly dis- 
tributed charge volume (and its various idealizedapprox- 
imations)with inside radius rl, outside radius r2, end 
planes z =zl and z =z2,midplane z =z , and mean 
radius r,, the following notation has bven adopted: 

i 1 2 3456 78 9 10 11 

r. r3 r 
1 I rl ‘1 ‘2 rm ‘rn rm m r2 l-1 r 

7,. z3 1 1 
z2 z1 z1 zm z2 z1 z zm zm zm 

2 
4rir l/2 

5 -Ai ’ 
pi = [r’+(q-z)‘l -2r , mi = - , 

pi+ r 

2 
2r n. - 1 pi-r ’ 

Ai = (ri+r)2 + (zi-z)2 , 
r2-P 

q= -J-$ I 
1 

(Zi -z)2 p. - ri 

‘i 7 

(~~-2)’ pi+ri 

7 
i ) 

Pi - ’ ’ niLh1/2 +TT* 
i ) 1 1 

ni2 

F(k) = 
d$ elliptic integral of the 

[I -k2 sin”@]“” ’ first kind 

T/2 

J- 

l/2 
E(k) = [l -k2 sin2 $11 d+ , elliptic integral of 

0 the second kind 

r/z 

n(n, k) 
d@ 

=. 
o [l +nsin2 $1 [I -k2sin2 +11’2, elliptic 

integral of the third kind 

1 +Cin(ni,ki)+DiB(mi,ki) 

King‘: 

Y 
Ez = - 

(z -zm) W5) 
2 

2n t 30 
0 *5 

(1 -k;) 

Y ki(r + rm) E(k5) 
Er = 1/z 4n2cOrAS 2r m ) 1 (1 -k$ 

Er = 
q 

47Ao(z2-zl) 

Washer: 

EZ = 

_ [ 

pll+r 1 
+& pII-’ 

p11-‘1 
B(nll’klO)+pll+r Btrnl 

L 

W-z,) 

2T2eo(r~-r$ 
X 

P11-r2 
,k )+- 11 9 pll+r n(mllykg) 

Er = Y 
27r2eo(ri-r3r 

X 

I 

Prolate Spheroid: For a prolate spheroid3 with semi- 
minor axis, a, and semimajor axis, c, 

EZ (1-A’) 32 

Q= 4n coa2c A2 

Er 3r -z 
4 Ss60a2c 

---$- a3 
[ 

(l-A loge s 

( il 

where A 
2 = 1 - (a/c)2 . 

EZ = 
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i 

Ratio of 
Tube to 

Bunch 
Diameter 
(2b/2a) 

1.2 

2.0 

10.0 

TABLE I 

(~~/a~p;) $, in Free Space 

at r' = b 

2' = C) 

1.2 

2.0 

10.0 

:/10 1.1703 .9478 

l/3 
Cprolate) 

.6326 .5396 
1 (sphere) .2778 .2564 
3 (ablate) .0990 .0971 
l/l0 .9267 . '7661 
l/3 .4351 .3897 
1 .1667 .1617 
3 .0563 .0561 
l/10 .3074 .2871 
l/3 .0990 .0980 

Spheroidal 
Bunch 

Geometry 

(a/c) 

l/lO(prolate) 
l/3 
1 (sphere) 
3 (oblate) 

l/10 
l/3 
1 
3 

l/10 
l/3 

, 1.2591 
7120 

:3333 
.1253 

1.2591 
17120 
.3333 
.1253 

I i (d=O) (!2=e) (?=O) (z%/Z) (ti=3C/4] 

* 3337 .0447 .0888 : 
1014 

: 
1521 

.3022 .1045 .0794 1631 2446 

: 1168 2222 .llSS .0885 .0555 .0263 :1063 1667 .2500 . 1594 

.5773 .0736 .3324 1014 .1521 

.4997 .1623 .2769 :1631 .2446 

.3333 .1842 1667 .1667 -2500 

.1595 .1257 :0690 . 1063 .1594 

.1966 a2504 .9517 .1014 .1521 

.8358 .3603 .6130 .1631 .2446 

.4452 

,351l 
.2134 

0926 - 
.4163 
.2933 
.1491 
.0554 

.2395 

.0953 

% 

I - 

(2' = c/2 

.0721 

.0879 

.0546 

.0149 

.0519 

.#34 

.0141 

.0020 

0069 
: 0012 

i 

TABLE ff 

Potential Depression Longitudinal Field in Rest Frame 
(ro/a2p;)A4 ko4p; 

J 
At Beam (At Beam ( I I 
Centerline Edge In Free Space With Wall Present 

(r'= 0) (+a) 1 7!==c z’=c 
2028 

:3262 
.0293 
.0753 

.3333 .1121 

.2126 .0914 

:I 
.2028 .0495 
.3262 .119'7 
.3333 .1526 
.2126 .1043 

2028 *OS45 
.3261 .1619 

.0878 

. 1919 
2309 

: 1564 
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Fig. 1. Comparision of field components of annular 
and idealized geometries. 
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Fig. 2. Comparison of actual and computed field values for spheroidal geometries. 
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Fig. 3. Field distribution for a non-uniform charge density prolate spheroidal model. 
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Fig. 4. Potential depression and longitudinal space charge reduction effects due to presence of a conduct- 
ing wall. 
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