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Summar

Properties of matched beams (definition:
beams whose dimensions oscillate with the pe-
riodicity of the machine) and their stability,
are discussed. At intensities beyond resonan-
ces several matched solutions exist. It is
shown that it may be possible to achieve an
increase in the number of accelerated parti-~
cles by injecting at those intensities and by
crossing the rescnances subsequently during
acceleration.

Introduction

As in previcus studies of the problem
(1,2,3,4), the assumption is made that any
2~dimensional projection of the 4-dim. trans-—
verse density distribution is constant inside
an ellipse and zero outside. With this distri-
bution space-charge forces correspond to a
beam-dimension dependent constant-gradient
field, defocusing in both transverse direc-
tions. The particle motion in the y-direction
is given by
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N : number cf protons in the machine,
v ¢ particle velocity, A 1 amplitude of ILith,
harmonic gradient pertur%atlon,

..sphase of this harmonic, & azimuthal angle,
mY “:mass of particles, B: longitudinal bunch-
ing factor Q_: zero-intensity Q-value in y-
plane, T and I : semi-axies of the elliptic
beam croSs—sectlion.

A similar eguation is valid for the
z-notion.

As the forces are linear in displacement
from the centre it is possible to write two
different equations for the senmi-axies r_ and
r ., Normalizing with respect to the emittan-
c%s, one obtainss
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Ey . emittances in y-and z-planes,
’

Constant~bnergy Beamns

Unperturbed Beams (Aym= -~ 0)

Although gradient perturbations are es-
sential for stopbands, it is instructive as
far as the non-linearity is concerned (depen—
dence of the envelope oscillation frequencies
on the oscillation amplitudes) first to consi-
der unperturbed cases.

Figure 1 gives, in the case of matched
beams, curves for maximum values for Y and Z,
normalized ({ and Z T, with re-
spect to the1r aa%c%ed cons%cn ‘Yalues., Trese

constant values are ) . 5 5 2 17
{ = 2 = 5 + -——--? o —
20 207 0

when B /i = 1 and Q_ = Q_ = Q. (In more ge-
neral cas@ they cannot o¥ expressed alge-
braically but increase in a similar way with

5).

Suppose EZ/Ey = 1 and QZ = Qy = 6.4.

for & = O the number of envelope oscillations,
Q‘, around the matched constant valuec equals
" 6.4 = 12,5 per turn. When b increases
decreases {increased space-charge defocussing)
At certain values of &, Q. becones integral,
i.e. the envelope, oscilliting with the perioc
dicity of the machine, is now matched. Witn -
an increasing oscillation amplitude and & =
const., ithe average space-charge delocusing
diminishes. Trerefore, to keep Qw integral
(matched beam) when envelope oscillations in-
crease, O must increase toc} curves a and b
are bent to tne right. Along o the 2 semi-ra-
dii oscillate in antiphase (antisymnetrical
solution), along b in phase (at the xmc fre~
quency) As & continues to increase, Q. cros-
ses lower integral valuesWhere more ma%cned
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golutions apprear.
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The second Tigure exhibits in a different
way the some non-linearity. The evolution of
mismatches are plotted at the end of each of
many successive perturbation pericds in an en-
velope phase plane, lach mismatch follows a
closed line. The constant matched solution cor
responds tc point A, the oscillating matched
solutions to curve C.

(Outside ¢ & Q> 12, inside C 1 Q
2

< 12, infi-
nitely far away Q, = 2 x 6.4 = 12.8).

17
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A very general case, where Y~ and Z-move-
ments are necessarily different, is presented
in Pig. 7 where the dotted lines show the
naximum values of the oscillating unperturbed
V% %00 to-vm)
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matched beam in units of the non-oscillating
beam. The plane with the small emittance and
the low Q=-value participates strongly at the
antisymmetric resonance. The resonance appears
as forced in the other plane. At the symmetric
resonance the roles are inversed.

Gradient-perturbed Beams (Qy:Q”, EZ/Eyzl)

Introducing, around the envelope resonan—
ce 12, a symmetric gradient perturbation with
the most perturbing harmonic (i.e. A_. . =A__ 2

7 12513k

= = )} one notices the
g)%lz ( seezﬂ‘gg. g%%

There is at least one matched sclution
Y (8) = 2 (8) for any b. The previously non-
oscillating envelope solution is slightly mo-
dulated by the perturbation. The symmetrically
oscillating branches are each divided into 2.
On the higher branch the phase between oscil-
lation and perturbation is such that Q. is in-
creased] as a compensation the envelopé now
oscillates mcre,On the lower branch it is the
opposite.

Fig. 4 shows similarly, as Fig. 2, the
evolution of equal mismatches in y and z, but
for a symmetrically perturbed beaum. Points I',
G and I represent the matched solutions and
correspond to Iy G and I, in Fig. 3. I and G
are the strongly oscillating solutions. The
perturbation phase is such that I is stable
and G unstable. I' is also stable.

An interesting aspect of the phenomena
is offered by Fig. 5, giving Y,. ... for &
constant and a symmetric pertu?ggtggﬁ as a
function of Q = Q . Where at zero-intensity
there was a stopband, now 1 stable periodic

solution exists.

When oscillating antisymmetrically, the
beam presents different maximum dimensions in
y and z, due to the perturbation being seen
differently, Eyrthermore, a third matched so~-
lution exists 4 TFor small oscillations of
this solution the phases in the itwo planes are
practically equal} as oscillations increase,
however, the phases become asymptotically anti

T e P I P 5 P symmetrlci forvlnflnitgly
large oscillations maxima are
not at & = {(2nN + ) /12 in

y o 12
hax REL e one plane and (2n (UF1)
Zuax REL penos P SYMMETRICAL PERTURBATION: S 12)/12 in the other, as
npemeecnty e vy oo s Apz-Age A, Gon-Fo=C {/ " a.ai  for “the already mentioned
’ ) Y oy o st 187t s g/{//sz antisymmetric solution (bran
14 n N A peshbation is present v /// . ches ¢ and d) but at

some a1 i the other. When Yo @, 5% '\Q - ! e

i on curve © 2y most be // ofﬂ/ Qy ‘Qé =64

on curve o or wce varsa S S @fi i

13 / /4/{ﬁ*¥ i .
//;}3’ a) Zero-intensity stopband
s ; c
/7\; widths are A 712
-~ 12

b) Solution found by F.
Sacherer, Berkeley, Fri-
vate communication
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SPACE-CHARGE MODIFIED
STOPBAND

only symmatrical axcilations are
considerad

The spoce charge forces cancel fhe
stopband for small envelope oscillafions

(provided § is wilicently lorge |

(2n (¥ + %)-+q%2) /12 and

(en (0 - i) + } /12. Branca e (dotted lines),
¥ig. 3, shows t%gs solution for a large pertur-
bation {4 = 1). When the perturbation vaniskes,
branches ¢, d and e of ¥ig. 3 coincide and be~
come branch a in Fig. 1.

In the case of a purely antisymmetric
§12th harmoni? perturbation
A — o= .
Ay1o” Ao 712 210 * n/12), there is

always & matched antisymmetric solution
Y (8) = 2(6 + n/12). Curves like c, d and e of
Fig. 3 would be at the symmetric resonance
§6=¢1.8). At the antisymmetric resonance
6:51.15) there would be continuity between the
weakly oscillating antisymmetric solution and
the strongly oscillating antisymmetric solution
in analogy with the continuity at & # 1.8 in
Fig. 3.

If, in addition to a large symmetric per-
turbation, other perturbations with arbitrary
phases but very small amplitudes are introdu-
ced, the curves for the matched beams double in

number and become rather complicated, as can be

seen from Fig. 6. At a given & above 1.15 there
are now 5 different matched solutions.
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Jortunately for the treatment of more ge-—
neral cases, the solutions drawn with dotted
lines in Fig. 6 appear to move to the upper
right when ( - ) /n assumes non-inte-
gral values oryl2 A Zl% becomes different from
1A , This way, th&¥“are of little relevance
asy}ong ag bean dimensions do not grow exces-
sively. IFig. 7 shows curves for low-dimension
matched beams in a very general case.
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Resonance Crossings (variable encrgy)

Incoherent betatron resonances can be
crossed with circulating becms by changing
Q, or Q_or, if & at injection is sufficiently
h{gh, dliring acceleration: although during ac-
celeration transverse beam dimensions shrink
as (¥p)=1/2 +the importance of space-charge
forces diminishes compared wita that of the
increasing magnetic fields. Supposing B"Y_3/4,
it can be shown from (6) that & varies with

4
EY x(l) . Thus, if a beam is injected at a

Y .

b b-value above resonances, during
acceleration those resonances are likely to
be crossed.

Two-Rescnance Crossing

Fig. 8 shows in the plane Tyay gppy,
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ZMAX REL the crossing with a beam, initially
matched, starting at & = 5.7} Ey/Ez = 1,

Q=Q, = 6.4, A

yl2

= Ale

= A

A = 0.1,

y11 = “gll

First the envelope remains matched. When it
enters the 1llth resonance, oscillations in~-
crease rapidly bringing the beam through it
with an oscillation increase approximately
twice what it would be if the beam was also

matched later.

sonance is crossed with a higher & than in the
matched case. Fig. 9 shows howlﬁimensions are

diminished by the factor (YB)

during acce=-

leration.
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Due to the mismatch the 12th re-

When the same rescnances are crossed in
the opposite direction (with an increasing b)
the envelope oscillation amplitude tends to000,
aes can be anticipated from the curves for the
matched solutions,

General Case

Fig. 10, 11, 12, 13 show crossings of the
12th symmetric and antisymmetric resonances
for a beam where E /E = 2, and Q_ = 6.4 and
Q = 6.3} the beam Yis” matched at’ injection.

A% the symmeiric crossing, mainly the y-plane
resonates, at the antisymmetric resonance it is
mainly the z-plane,
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Chamber-Wall Limitations

If N, Eg/Ez’ ¥ and B are kept constant

and F_ varies, the constant chamber wall
limit&tions a and b zppear as parabolas in the
planes YMAX’ 5 and ZMAX’ d.

¥ -a-—J 5 A L F
HAX oy MAX pZJ

e2N

mkﬁm
™~

Za7
4n eomo 02B2Y3 B

stz

Dividing these equations with the matched
unperturbed solutions, which we approximate
with the solution for the round beam, we obtain
the conditions:
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1 (It is not fulfilled in the y-plane for the
P general case discussed in this paper).
TIIAX REL y Similarly . 4
5 5 10 1 for other b) 5 is not chosen so high that a strongly
py 5+ ——-) + = plane. oscillating matched beam with too large di~-
2Q 2Q Q mensions must be injected. This condition
J J y imposes an upper limit for b.
a ! ! The way the bunching factor B changes du-
b smalls YMAX REI“:}T— Q0 ring acceleration (and the resulting variation
¥ of 6) might affect the crossing of resonances.

Generally speaking, whether or not there

a
HERS - S -
b large MAX REL < Py Qy is any sense in injecting atintensities beyond
one or more resonances depends mainly on the
y strength of gradient perturbations.
MAX REL
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