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Properties of matched beams (definition: 
beams whose dimensions oscillate with the pe- 
riodicity of the machine) and their stability, 
are discussed. At intensities beyond resonan- 
ces several matched solutions exist. It is 
shovm that it may be possible to achieve an 
increase in the number of accelerated parti- 
cles by injecting at those intensities and by 
crossing the resonances subsequently during 
acceleration. 

Introduction 

As in previous studies of the problem 
(1,2,3,4), the assumption is made that any 
2-dimensional projection of the J-dim. trans- 
verse density distribution is constant inside 
an ellipse and zero outside. With this distri- 
bution space-charge forces correspond tc a 
beam-dimension dependent constant-gradient 
field, defocusing in both transverse direc- 
tions. The particle motion in the y-direction 
is given by 
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1; : number of protons in the machine, 
v : particle velocity, A I amplitude of Kth, 
harmonic gradient pertur@tion, 

p.,.:phase of this harmonic, '3 azimuthal angle, 
my1 :mass of particles, Br longitudinal bunch- 
ing factor 9 : zero-intensity Q-value in y- 
plane, r an ;4r : semi-axieo 
beam c&s-sectTon. 

of the elliptic 

A cinilxr equation is valid for the 
z-notion. 

As the forces are linear in displacement 
from the centre it is possible to write two 
different equations for the semi-axies r and 
r . 
zs, 

Normalizing with respect to the emi%t:;n- 
one obtains: 
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: emittanceo in y-and z-planes. 

Constant-l<nergy Eeams 
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IJnperturbed Beams (A yx I = l;zii= 0) 

Although gradient perturbations are ES- 
sentinl for stopbands, it is instructive as 
far as the non-linearity is concerned (depec- 
dance of the envelope oscillation frequencies 
on the oscillation amplitudes) first to consi- 
der unperturbed cases. 

l?igure 1 gives, in the case of matched 

bmically but increase in a similar rn:~y with 
6). 

Suppose SzjE 
Y 

=lnndiZ =Q =6.4. z Y 
For b = 0 the number of envelope oscillations, 
Q around the matched constant va.luc equzls 
2"; ii.4 = l*.lj per turn. '7lien 6 increases 0 
decre:;ses (increased space-charge defocussi!&) 
At certain values of 6, Q:, becomes i.rtegral, 
i.e. the envelope, oscillsting with the perio 
dicity of the machine, is non matched. Pitn - 
an increasing oscillation anlplitudc aiid 6 = 
con&., tile average space-ch:irge defocuclng 
diminis;ien. Therefore, to keep QJi integral 
(m:ltched benm) wnen envelope oscill.aticns iri- 
crease, 6 must increase too; curves a and t 
are bent to the right. Along n the 2 nemi-rn- 
dii oscillate in antiphdse (antisy:m.e-tric-11 
solution), along b in phase (at the same fre- 
quency). As b continues to increcse, 0. cros- 
ses lower integral valueswhere more ma k ched 

© 1967 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1967



568 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, JUNE 1967 

solutions :~ppear. 

’ Y.“. “CL ani ‘Zrn,tEL PI -Qz = 6.4 
(j+ 

The second figure exhibits in a different 
way the some non-linearity. The evolution of 
mismatches are plotted at the end of each of 
many successive perturbation periods in an en- 
velope phase plane. kach mismatch follows a 
closed line. The constant matched solution car 
responds tc point A, the oscillating matched - 
solutions to curve C. 

(Outside C : Q1,>.12, inside C I Q!,:< 12, infi- 
nitely far away Ok,; = 2 x 6.4 = 12.8). 

A very general case, where Y- and Z-move- 
ments are necessarily different, is presented 
in Pig. 7 where the dotted lines show the 
naximum values of the oscillating unperturbed 
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matched beam in units of the non-oscillating 
beam. TAe plane with the small emittance and 
the low Q-value participates strongly at the 
antisymmetric resonance. The resonance appears 
as forced in the other plane. At the symmetric 
resonance the roles are inversed. 

Gradient-perturbed Beams (Qy=Q 2' EzjEy=l) 

Introducing, around the envelope resonan- 
ce 12, a symmetric gradient perturbation with 

i;l;;'tf?;';":g ~~f”~~~~c~~*~i;ekYi2~~~~~~~ 
see 'lg. . 

There iG at least one matched solution 
Y (@) = Z (@) for any b. The previously non- 
oscillating envelope solution is slightly mo- 
dulated by the perturbation. The symmetrically 
oscillnting branches are each divided into 2. 
3n the higher branch the phase between oscil- 
lation and perturbation is such that 9, is in- 
creased; as a compensation the envelope now 
oscillates mcre.On the lower branch it is the 
opposite. 

Fig. 4 shows similarly, as Fig. 2, the 
evolution of equal mismatches in y and e, but 
for a symmetrically perturbed beam. Points 10, 
G and I represent the matched solutions and 
correspond to 1", G and I, in Pig. 3. I and G 
are the strongiy oscillating solutions. The 
perturbation phase is such that I is stable 
and G unstable. F is also stable. 

An interesting aspect of the phenomena 
is offered by Fig. 5, giving Yi,llX XE~ for fi 
constant and a symmetric perturbation as a 
function of Q = Q . \'ihere at zero-intensity 
there was a s%opb&d, now 1 stable periodic 
solution exists. 

i7hen oscillating antisymmetricnlly, the 
beam presents different maximum dimensions in 
y and z, due to the perturbation being seen 
differently. %rrthermore, a third matched so- 
lution exists . For small oscillations of 
this solution the phases in the two planes are 
practically equal; as oscillations increase, 
however, the phases become asymptotically anti 

symmetric: for infinitely - 
large oscillations maxima are 

y; ;;,:.e=a~;";2$?z?)~;" in 

+ ?lJ' 12 in‘the other, as 
for the already mentioned 
antisymmetric solution (brag 
ches c and d) but at 

a) Zero-intensity stopbnnd 
widths are A 2, z12 

12 
b) Solution found by I?. 

Sacherer, Berkeley, Pri- 
vate communication 
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12. Bmnc:i e (dotted lines), 
Lis solution for a large pertur- 

bation (A = 1). When the perturbation vanishes, 
branches c, d and e of Fig. 3 coincide and be- 
come branch a in Fig. 1. 

In the case of a purely nntisymmetric 

n/12), there is 

always a matched antisymmetric solution 
Y (~3) = Z(Q + n/12). Curves like c, d and e of 
Fig. 3 would be at the symmetric resonance 

t 
6al.8). At the antisymmetric resonance 
SS1.15) there would be continuity between the 

weakly oscillating antisymmetric solution and 
the strongly oscillating antisymmetric solution 
in analogy with the continuity at 8 e 1.8 in 
Fig. 3. 

If, in addition to a large symmetric per- 
turbation , other perturbations with arbitrary 
phnses but very small amplitudes are introdu- 
ced, the curves for the matched beams double in 

number and become rather complicated, 3s can be 
seen from Fig. 6. At a given b above 1.15 there 
ore now 5 different matched solutions. 

Y x1, WC. y not ddcd &.Kucnll* /lcrm"h.nl 
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l'ortunztely for the treatment of more ?;e- 
neral cases, the solutions druvin with dotted 
lines in i"ig. 6 appear to 31ove to the upper 
right when (py12- pa, ) /E assumes ncn-inte- 
gral values or vi f becomes different from 
1 n 2'. This way, thZ$2zre of little relevance 
asY$ong as beam dimensions do not grow exces- 
sively. Fig. 7 shows curves for low-dimension 
natched beams in a very gener<rl caee. 
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Resonance Crossings (variable energy) 

Incoherent betatron resonances can be 
crossed with circulating beclms by changing 
Q or Q or, if 6 at injection is sufficientLy 
h?gh, d?iring acceleration: Llthough during ac- 
celeration transverse beam dimensions shrink 
as (@)-l/2 the importance of space-charge 
forces diminishes comp.ared witi that of the 
increasing magnetic fields. Supposing BNYS3/'l , 
it can be shown from (6) that 6 varies with 

1 5/a 
$XY i 1 

. Thus, if a beam is injected at a 
b-value above resonances, during 

acceleration those resonances are likely to 
be crossed. 

Two-Resonance Crossing 

Fig. 8 shows in the plane i'I,i;<< RI<,, = 
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Z MAX REL the crossing with a beam, initially 
matched, starting at 6 = 5.7j Ey/EZ = 1, 
Qy= Qz = 6.4, Ay12 = As12 = Ayll = As11 = 0.1. 

First the envelbpe remains matched. When it 
enters the 11th resonance, oscillations in- 
crease rapidly bringing the beam through it 
with an oscillation increase approximately 
twice what it would be if the beam was also 
matched later. Due to the mismatch the 12th re- 
sonance is crossed with a higher 6 than in the 
matched case. Fig. 9 shows ho!1 hmensions are 
diminished by the factor (VP) 7 during acce- 
leration. 
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When the same resonances are crossed in 
the opposite direction (with an increasing 8) 
the envelope oscillation amplitude tends tom, 
as can be anticipated from the curves for the 
matched solutions, 

General Case 

Fig. 10, 11, 12, 17 show crossings of the 
12th symmetric and antisymmetric resonances 
for a beam where E /E = 2, and Q = 6.4 and 
Q 
A! 

= 6.3; the beam yis" matched atY injection. 
the symmetric crossing, mainly the y-plane 

resonates, at the antisymmetric resonance it is 
mainly the z-plane. 

Chamber-Wall Limitations 

If N, 11: 
and E d 

Y and B are 
varied, 

'Es, 
the constant 

limitgtions a and b appear as 
planes YrlAx, 6 and Zrtmxy 6. 

kept constant 
chamber wall 
parabolas in the 

a 
YrJAX F I- b Lb ZEdAx p, r 

py,z = 4~t~~rn~ c2p2Y3 B 

Dividing these equations with the matched 
unperturbed solutions, which we approximate 
with the solution for the round beam, we obtain 
the conditions: 
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1 (It is not fulfilled in the y-plane for the 
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Conclusions 

For given intensity, bunching factor, par- 
ticle energy und chamber dimensions, it is ob- 
vious that there is a minimum value for 6 : 

general case discussed in this-paper). 

b) 6 is not chosen so high that a strongly 
oscillating matched beam with too large di- 
mensions must be injected. This condition 
imposes an upper limit for b. 

The way the bunching factor B changes du- 
ring acceleration (and the resulting variation 
of 6) might affect the crossing of resonances. 

Generally speaking, whether or not there 
is any sense in injecting atintensities beyond 
one or more resonances depends mainly on the 
strength of gradient perturbations. 
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