BEAT-ENVEIOPE OSCIDLATIONS WITH SPAC: CHARGE
 IN CIRCUIAR FARTICLE ACCEIERATORS

P.N. Lapostolle and I. Thorndahz CERN, Geneva, Switzerland

Abstract

Summary Properties of matched beams (definition: beams whose dimensions oscillate with the periodicity of the machine) and their stability, are discussed. At intensities beyond resonances several matched solutions exist. It is shown that it may bo possible to achieve an increase in the number of accelerated particles by injecting at those intensities and by crossing the resonances subsequently during acceleration.

Introduction

As in previous studies of the problem ($1,2,3,4$), the assumption is made that any 2-dimensional projection of the 4-dim. transveroc density distribution is constant inside an ellipse and zero outside. With this distribution space-charge forces correspond to a beam-dimension dependent constant-gradient field, defocusing in both trensverse directions. The particle motion in the y-direction is given by
$\frac{d^{2} y}{d \theta^{2}}+\left[Q_{y}{ }^{2}+\sum_{\mathrm{M}=1 \mathrm{y}}^{\infty} \cos \left(\mathrm{M} \theta-\varphi_{\mathrm{yN}}\right)\right.$
$\left.-\frac{e^{2} B R}{2 \pi^{2} v^{2} \boldsymbol{\varepsilon}_{0} m \boldsymbol{r}^{2} B} \frac{I}{r_{y}\left(r_{z}+r_{y}\right)}\right] y=0$
Ni : number of protons in the machine,
$v:$ particle velocity, A : amplitude of bith, harmonic gradient perturbation,
φ_{y} : phase of this harmonic, θ azimuthal angle, m :mass of particles, E : longitudinal bunching factor Q : zero-intensity Q-value in $y-$ plane, r and r : semi-axies of the elliptic beam cross-section.

A similer equation is valid for the z-notion.

As the Porces are linear in displocement from the centre it is posoible to write two different equations for the semi-axies r and r_{z}. Nomalizing with respect to the emittencés, one obtains:

$$
\begin{align*}
& \frac{d^{2} Y}{d \theta^{2}}+\left[Q_{y}^{2}+\sum_{[i=1}^{\infty} Y_{Y H} \cos \left(H \theta-\varphi Y_{H}\right)\right] Y \\
& -\frac{I}{Y^{3}}-\frac{2 \delta}{\sqrt{\frac{E_{Y}}{Z}} Y+Z}=0 \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& \frac{d^{2} z}{d \theta^{2}}+\left[Q_{z}^{2}+\sum_{i n=1}^{\infty} z M \cos \left(N G-\varphi_{z H}\right)\right] z \\
& -\frac{1}{z^{3}}-\frac{2 \delta}{Y+\sqrt{\frac{Z}{Z_{y}}} z}=0 \\
& Y=\frac{r_{y}}{\sqrt{R E_{Y} / \pi}} \quad \text { (4) } \quad Z=\frac{r_{z}}{\sqrt{R E_{z} / \pi}} \\
& \delta=\frac{e^{2} N}{4 \pi \varepsilon_{0} m_{0} c^{2} \beta^{2} \gamma^{3} B \sqrt{i_{y} E_{z}}} \\
& E_{y, z}: \text { emittances in } y \text {-and } z \text {-planes. } \\
& \text { Unperturbed Beams (} A_{y n}=\hat{\Lambda}_{2 i n}=0 \text {) }
\end{aligned}
$$

Although gradient perturbations are essential for stopbands, it is instructive as far as the non-linearity is concerned (dependance of the envelope oscillation frequencies on the oscillation amplitudes) first to consider unperturbed cases.

Figure 1 gives, in the case of matched beams, curves for maximum values for Y and Z, normalized ($Y_{\text {PAY }}$ and $Z_{\text {pAX }}$) witĥ respect to their tiatched constant values. Tleese constant values are

$$
Y=z=\sqrt{\frac{\delta}{2 Q^{2}}+\sqrt{\left(\frac{\delta}{2 Q^{2}}\right)^{2}+\frac{1}{Q^{2}}}}
$$

when $E_{z} / \mathrm{F}_{\mathrm{Y}}=1$ and $Q_{z}=Q_{y}=Q$. (In more general z^{Z} cass they canñot be expressed algebraically but increase in a similar way with ठ).

$$
\text { Suppose } E_{Z} / E_{Y}=1 \text { and } Q_{z}=Q_{Y}=6.4
$$

For $\delta=0$ the number of envelope oscillations, Q_{F}, around the matched constant value equals $2^{1} 6.4=12.0$ per turn. When δ increases Q_{1} decreases (increased space-charge defocussin̆g) At certain values of δ, Q becones integral, i.e. the envelope, oscilluting with the perio dicity of the machine, is now matched. Witn an increasing oscillation amolitude and $\delta=$ const., the average space-charge defochaing diminishes. Tlerefore, to keep $\rho_{\text {i }}$ integral (matched beam) when envelope oscivistions increase, δ must increase too; curves a and b are bent to the right. Along a the 2 seni-radii oscillate in antiphase (antisymetrical solution), along b in phase (at the same frequency). As δ continues to increase, O_{E} crosses lower integral valueswhere more matched
solutions appear.

The second Iigure exhibits in a different why the some non-linearity. The evolution of mismatches are plotted at the end of each of many successive perturbetion periods in an envelope phase plane. Lach mismatch follows a closed line. The constant matched solution cor resronds to point A, the oscillating matched solutions to curve C.
(outside $0: Q_{1}>12$, inside $C: Q_{0}<12$, intinitely far away $Q_{\mathrm{E}}=2 \times 6.4=12.8$).

A very general case, where Y - and $Z-m o v e-$ ments are necessarily different, is presented in Tig. 7 where the dotted lines show the maximum values of the oscillating unperturbed

matched beam in units of the non-oscillating beam. Tine plane with the small emittance and the low Q-value participates strongly at the antisymmetric resonance. The resonance appears as forced in the other plane. At the symmetric resonance the roles are inverocd.

Gradient-perturbed Beams $\left(Q_{y}=Q_{z}, E_{z} / F_{y}=1\right)$
Introducing, around the envelope resonance 12, a symmetric gradient perturbation with

There is at least one matcned solution $Y(\theta)=Z(\Theta)$ for any δ. The previously nonoscillating envelope solution is slightly modulated by the perturbation. Whe symmetrically oscillating branches are each divided into 2. On the higher branch the phase between oscillation and perturbation is such that $Q_{\mathrm{E}_{\mathrm{B}}}$ is increased; as a compensation the envelopë now oscillates more.On the lower branch it is the opposite.

Fig. 4 shows similarly, as Fig. 2, the evolution of equal mismatches in y and z, but for a symmetrically perturbed beam. Foints F , G and I represent the matched solutions and correspond to F, G and I , in Fig. 3. I and G are the strongly oscillating solutions. The perturbation phase is such that I is stable and G unstable. Fis also stable.

An interesting aspect of the phenomena is offered by Fig. 5, Giving Y constant and a symmetric perturbation as a function of $Q_{1}=Q_{\text {, Where }}$. Wero-intensity there was a stopbẵd, now 1 stable periodic solution exists.

When oscillating antisymmetrically, the beam presents different maximum dimensions in y and z, due to the perturbation being seen differently. Furthermore, a third matched solution exists . For small oscillations of this solution the phases in the two planes are practically equal; as oscillations increase, however, the phases become asymptotically anti symmetric: for infinitely large oscillations maxima are not at $\theta=(2 \pi N+\varphi, 12$ in one plane and ($2 \pi(12+1)$ $\left.+\varphi_{12}\right) / 12$ in the other, as for ${ }^{12}$ the already mentioned antisymmetric solution (bran ches c and d) but at
a) Zero-intensity stopband widths are Λ

$$
\frac{y_{2}, z 12}{12}
$$

b) Solution found by F . Sacherer, Berkeley, Private communication

$\left(2 \pi\left(\mathbb{N}+\frac{1}{2}\right)+\varphi_{12}\right) / 12$ and
$\left.\left(2 \pi(1)-\frac{1}{2}\right)+\varphi_{2}\right) / 12$. Brancin e (dotted lines), Fig. 3, shows this solution for a large perturbation ($A=1$). When the perturbation vanishes, branches c, d and e of Fig. 3 coincide and become branch a in Fig. 1.

In the case of a purely antisymmetric (l2th harnonic) perturbation
$\left(A_{y 12}=A_{z 12}, \phi_{\mathrm{y} 12}=\boldsymbol{\varphi}_{z 12}+\pi / 12\right)$, there is always a matched antisymmetric solution $Y(\theta)=Z(\theta+\pi / 12)$. Gurves like c, d and e of Fig. 3 would be at the symmetric resonance $(\delta \approx 1.8)$. At the antisymmetric resonance ($\delta \approx 1.15$) there would be continuity between the weakly oscillating antisymmetric solution and the strongly oscillating antisymetric solution in analogy with the continuity at $\delta \& 1.8$ in Fig. 3.

If, in addition to a large symmetric perturbation, other perturbations with arbitrary phases but very small amplitudes are introduced, the curves for the matched beams double in
number and become rather complicated, as can be seen from Fig. 6. At a given δ above 1.15 there are now 5 different matched solutions.

Zortunately for the treatment of more seneral cases, the solutions drawn with dotted lines in fig. 6 appear to nove to the upper right when $\left(\varphi_{\mathrm{Em}}^{\mathrm{y}} \mathrm{y}\right.$ values $\left.-\phi_{\text {zl }}\right)$) $/ \pi$ assumes non-inte|A d. This way, they are of jittie relevance as ylong as beam dimensions do not grow excessively. Fig. 7 shows curves for low-dimension matched beams in a very general case.

Resonance Crossings (variable energy)

Abstract

Incoherent betatron resonances can be crossed with circulating beams by changing Q_{y} or $Q_{\text {or }}$ or if δ at injection is sufficiently high, düring acceleration: although during acceleration transverse beam dimensions shrink as $(\gamma \beta)^{-1 / 2}$ the importance of space-charge forces diminishes compared with that of the increasing magnetic fields. supposing $B \sim \gamma^{-3 / 4}$, it can be shown from (() that δ varies with $\frac{1}{\beta} \times\left(\frac{1}{\gamma}\right)^{5 / 4}$. Thus, if a beam is injected at a -value above resonances, during acceleration those resonances are likely to be crossed.

Two-Resonance Crossing

Fig. 8 shows in the plane $Y_{\text {liaX Ret }}=$
${ }^{2}$ MAX REL the crossing with a beam, initially matched, starting at $\delta=5.7!\mathrm{E}_{\mathrm{y}} / \mathrm{E}_{z}=1$, $Q_{y}=Q_{z}=6.4, A_{y l 2}=A_{z l 2}=A_{y l l}={ }_{z}=1, Z_{z l l}=0.1$. First the envelope remains matched. When it enters the llth resonance, oscillations increase rapidiy bringing the beam through it with en oscillation increase approximately twice what it would be if the beam was also matched later. Due to the mismatch the 12 th resonance is crossed with a higher δ than in the matched case. Fig. 9 shows how dimensions are diminished by the factor $(\gamma \beta)^{-1 / 2}$ during acceleration.

Wher the same resonances are crossed in the opposite direction (with an increasing 8) the envelope oscillation amplitude tends to ∞, as can be anticipated from the curves for the matched solutions.

General Case

Fig. 10, 11, 12, 13 show croosings of the 12th symmetric and antisymmetric resonances for a beam where $E_{y_{i}} / E_{z}=2$, and $Q_{y}=6.4$ and $Q_{z}=6.3 ;$ the beam $y_{i s}^{z}$ matched at ${ }^{y}$ injection. A ${ }^{4}$ the symmetric crossing, mainly the $y-p l a n e$ resonates, at the antisymmetric resonance it is mainly the $z-p l a n e$.

Chamber-Wall Limitations
If N, E, E_{z}, γ and B are kept constant and F varies, Z the constant chamber wall limitations a and b appear as parabolas in the planes $Y_{\text {MAX }}$, δ and $Z_{M A X}$, δ.

$$
\begin{aligned}
& Y_{\operatorname{MAX}} \frac{a}{\rho_{y}} \sqrt{\delta} Z_{M A X} \frac{b}{\rho_{z}} \sqrt{\delta} \\
& \rho_{y, z}=\frac{e^{2} N \sqrt{\frac{E_{2}}{E_{z, z}}}}{4 \pi \varepsilon_{0} m_{0} o^{2} \beta^{2} \gamma^{3} B}
\end{aligned}
$$

Dividing these equations with the matched unperturbed solutions, which we approximate with the solution for the round beam, we obtain the conditions:
(It is not fulfilled in the $y-p l a n e$ for the general case discussed in this paper).
b) δ is not chosen so high that a strongly oscillating matched beam with too large dimensions muot be injected. This condition imposes an upper limit for δ.
The way the bunching factor B changes during acceleration (and the resulting variation of δ) might affect the crossing of resonances.
Generally speaking, whether or not there is any sense in injecting atintensities beyond one or more resonances depends mainly on the strength of gradient perturbations.
References
References
I.
I.
Kapchinskij, I.M. and Vladimirskij, V.V.
Kapchinskij, I.M. and Vladimirskij, V.V.
Timitations for proton beam current in a
Timitations for proton beam current in a
strong focussing linear accelerator asso-
strong focussing linear accelerator asso-
ciated with the beam space-charge.
ciated with the beam space-charge.
Proceedings of the International Conference
Proceedings of the International Conference
on High Energy Accelerators - CERN }195
on High Energy Accelerators - CERN }195
2.
Smith I_{1}.
Effect of gradient errors in the presence
of space charge forces
Proceedings of the Intemational Conference
on High Energy Accelerators - Dubna 1963
3.
Lapostolle F .
Oscillations in synchrotron under space
charge conditions
Proceedings of the International Conference
on High Energy Accelerators - Dubna 1963
4.
Sacherer I'.
The behaviour of intense charged beans in
the presence of gradient errors.
UCID-10189 - 1966

