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THEORY 

Summary 

By combining the results of longitudinal in- 
stability theory and synchrotron oscillation the- 
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ory, it is possible to derive two simple and useful 
expressions for longitudinal instability particle 
threshold. The first, which holds at injection, is 
given directly in terms of design parameters; in 
practical cases it turns out to depend only slight- 
ly on injection energy and to be independent of 
field index and vacuum chamber size, provided only 
that the vacuum chamber is large enough to contain 
particle oscillations. The second, which is based 
on adiabatic bunch behavior, displays the varia- 
tion of threshold with energy; it decreases mono- 
tonically from injection to transition (if a real 
transition exists) and then increases monotonically, 
Different regions of this universal curve are rele- 
vant, depending upon whether the machine considered 
is a booster, a weak-focusing machine, or a stan- 
dard AG synchrotron in which transition is crossed. 
Practically, it appears that recently proposed 
boosters will be free from longitudinal instabili- 
ties if a little care is exercised in design. It 
is quite evident that proposed "improved" AG ma- 
chines will have no problems at injection; the 
treatment of the transition region is still crude, 
and further analysis will be required for a defi- 
nite answer - it appears that there might be trou- 
ble at least in Phase II (2 x 1013 protons) unless 
the capture at injection is extremely efficient. 

I. Introduction 

When the number of particles in an accelerator 
beam exceeds a certain value, called the particle 
threshold, Nbt, the accelerator becomes susceptible 
to longitudinal beam degeneration 'au;': by the 
amplification of beam irregularities. Such a 
state is called a state of longitudinal instability, 
and the instability is described as resistive or 
negative-mass depending upon the mechanism pro- 
ducing it. (Below transition, only the former 
exists; above transition, the latter predominates.) 

The particle threshold, which depends on the 
energy spread in the beam (and hence on the ampli- 
tude of the synchrotron - but not betatron - oscil- 
lations) may be written5 

t Work performed under the auspices of the 
U.S. Atomic Energy Commission. 

$ A more detailed treatment is given in BNL Accel- 
erator Dept. Internal Report AADD-128. Please re- 
fer to this for details of derivations and discus- 
sions omitted due to space limitations. 
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where 2Ar, is the full synchrotron width, r. is 
the classical radius 

2 
r 

0 
= _e_? (= 1.53 x lo-l6 cm for the proton), (2) 

mOC 

R is the average accelerator radius, B is the 
bunching factor 

BE 
actual number of particles in the beam 

number of particles in an equivalent ' (3) 

uniform beam 

2 is the characteristic impedance in ohms be- 
tzeen beam and tank considered as a transmission 
line [= 60 In (b/a) for a coaxial cylindrical 
geometry in which b is the inner tank radius and 
a 
and 

is the beam radius], y and yt are the energy 2 
transition energy respectively in units of m c , 

The constant U' is a quantity4 dependent on the' 
density distribution across the tank and on 
whether the behavior is above or below transition. 
The ratio V/U is given by5 (for a coaxial geometry) 

V -= JR 
U b &n [l + 2 In (b/a)] % (4) 

where n is the harmonic order of the instability, 
I.e., the approximate ratio of plasma frequency to 
particle circulation frequency; for relevant val- 
ues of n this ratio is very small: 

(V/U) << 1 . (5) 

If we further define, for convenience, 

ri = (l/y;) - (l/r5 (6) 

then we may rewrite (2) in the more compact form 

Nbt 

We can find the threshold as a function of 
design parameters if we combine Eq. (7) with the 
results of synchrotron oscillation theory.8 It 
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can be shown that the maximum radial spread, or 
half radial synchrotron width at injection is - 

f 

fir =11_ 
S 2 

Vt 
(at injection) (8) 

where h is the harmonic number, N the number of 
gaps, V the peak gap voltage and as the synchro- 
nous phzse. We must remember that (8) represents 
the radial spread only if there are actual parti- 
cles available for capture at the limiting values 
of v , i.e., at injection; during the accelera- 
tion process the longitudinal size of the beam 
shrinks, there are simply no particles out as far 
as cp = Tl - cps> and (8) does not give a true pic- 
ture of the actual spread available to suppress 
longitudinal instabilities. 

Adiabatically the radial spread Or varies as 

D 
Cr = 7,1/4SY3/4 exp (* j rn J dt) (il P 0) (9) 

while the phase difference varies as 

v -'p, ZC ( f )'liiexp (& j Is n dt 

where 
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with 

'A 
0 

= c/R . (12) 

When q is near zero it is necessary to use one- 
third order Bessel functions. 

We must consider rise rates as well as thresh- 
olds, because even if a system is operating above 
particle threshold, there will be no problem if 
the rise rate is slow enough. The standard rise 
rate for ne ative-mass instabilities, which is an 
upper limit 5 to the actual rise rate, is given by 

1 -=nc 
TN 1 2 > [l + (Zo/30)l -+ } 

112 
(13) 

R Y 

where Nb is the actual number of particles in the 
beam. The standard rise rate for resistive in- 
stabilities is given by5 

l/TR = (l/2) (v/u) (l/TN) (14) 

which, from (5), is somewhat less than the 
negative-mass rise rate. 

How many time constants 7R or TN can a machine 
tolerate? It appears6from some experiments car- 
ried out at Princeton that the beam fluctuations 
involved may be primarily those of ordinary shot 
noise, and that the beam degenerates if the shot 

noise is amplified so much that the fluctuations 
in beam current are of the order of magnitude of 
the current itself. (Similar fluctuations had 
been observed earlier at the Cosmotron.') This 
process takes something of the order of five or 
ten time constants. Hence, since the T'S are 
minimum times,5 there will probably be trouble in 
an accelerator if the duration of the state of in- 
stability is more than say fifteen or twenty times 
the value of the relevant minimum T. [Note that 
the amplification of the beam degeneration would 
be cumulative if successive machines (e.g., a 
booster and a main synchrotron) happened to amplify 
any of the same frequency range; however this 
possibility is unlikely.] 

There remains the question of n. One can 
see from Eq. (13) that the rise rate for negative- 
mass instabilities is proportional to n, and from 
(13), (14) and (4) that the rise rate for resis- 
tive instabilities varies as /n. If the beam de- 
generation goes on for five or ten time constants, 
only the highest frequency fluctuations will re- 
main as they are amplified so much faster. There 
is, however, a cutoff, and hence we can use the 
cutoff value as a good estimate of n. It appears 
from the experiments at Princeton6 that cutoff OC- 

curs at about 

n - (R/b) (15) 

For this value of n, and reasonable values for ths 
conductivity and dimensions, we find the ratio V/U 
of Eq. (4) quite small, and hence Eq. (7) is jus- 
tified. 

II. Threshold at Injection 

We can now calculate the longitudinal insta- 
bility threshold at injection by simply substitu- 
ting Eq. (8) for the radial half-width at injec- 
tion into Eq. (7) for the threshold, to obtain 

X [(ii - 2qs) sin 'p, - 2 cos qs] (16) 
(injection) 

where E o is the rest energy moc2. 

The interesting thing about (16) is how many 
parameters it does not depend on, or depends on 
only slightly. In the first place, all the Yt 
terms, including 'Q, have cancelled out, so (16) 
is the same no matter what type of machine. In 
the second place, the B terms have cancelled out 
and the only energy dependence left is the y2 term, 
which does not vary very much within the usual 
range of injection energies, and which certainly 
varies less in this range than the space-charge 
threshold. In the third place - and again in con- 
trast with the case of charge instabilities - the 
threshold is practically independent of beam or 
transverse tank dimensions, except that (1) there 
is a small contribution from the In term, and (2) 
the tank must be large enough to contain the beam, 
including synchrotron and betatron oscillations, 
effects of fluctuations, and any spreading. 

PAC 1967



564 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, JUNE 1967 

III. Variation of Threshold with Enerpv: 
The Universal Curve 

Now we look at the variation of longitudinal 
instability threshold as a function of energy 
through the acceleration cycle. 

We start with the threshold equation (7) as 
before. But now we assume that (2Ars) varies with 
energy adiabatically as described by Eq. (9), and - 
since except for extreme values the phase plots all 
have about the same shape - that the bunching fac- 
tor B varies as (r+ - ss) as given by Eq. (10). We 
assume that neither Zo nor IU'I vary with energy. 
LActually Z, does vary, but it depends logarithmi- 
cally on the over-all beam radius (due to synchro- 
tron width, betatron width and fluctuations, as 
well as any possible beam spreading); its variation 
is small and not certain and we shall neglect it. 
The same comment applies to (U/I, which might have 
a small variation with energy as the beam profile 
changed.] Then we can write 

Nbt "' 
5’4 II+‘4 cc 

11 - (Y/Q2 (3’4 

(y/ytP4 
(17) 

We note specifically that Eq. (17), like Eq. (16), 
contains no 6 terms and hence in general Nbt 
varies rather slowly near injection. Note also 
that the only energy dependence is upon the ratio 
(YlYt) ' Hence the curve, which is plotted in Fig.1, 
is universal in the sense that it can be scaled to 
all accelerators. Different machines correspond 
merely to different portions of the curve. Note 
that the curve decreases monotonically to zero at 
transition, and then increases monotonically. [The 
first derivative dNbt/d(y/vt) has no real zeroes 
for finite real (y/yt) f 1. But actually Eq. (17) 
is inadequate at transition - see Section V.] 

For a conventional- 
Cosmotron," 5 

radient machine like the 

(1 
the factor yt is replaced by 

- q) [I + (s/d], where nf is the field index 
and s/m is the ratio of the length of straight sec- 
tions to the length of magnet sections, i.e., 
1 + (s/m) = R/r; for the standard field index of 
0.6 or so this is less than unity. 
in the Cosmotron,g Yt - 

[For example, 
0.7.1 Hence a machine like 

the Cosmotron operates in the right hand portion of 
the universal curve of Fig. 1. Note that the in- 
jection value of threshold is a lower limit (i.e., 
things get better), and the threshold increases 
during the acceleration process to about ten times 
its injection value. 

The booster proposed by Maschke and SmithlO -- 
for use with the Brookhaven AGS is an alternating- 
gradient synchrotron of moderate field gradient 
(resulting in this case in vt - 2.5) operating from 
50 MeV (v = 1.05) up to either 200 MeV (v = 1.21) 
or about 630 MeV (v = 1.67). Hence on Fig. 1 it 
operates in a small range in the left hand portion 

x 
The Cosmotron is not operating, but it is the 
prototype of several existing machines. Note, 
however, that these remarks do not apply to the 
Argonne ZGS, which has nf = 0 and hence vt > 1. 

of the curve, 
or 0.67. 

from (v/yt) = 0.42 to (y/yt) = 0.48 
So during the restricted acceleration 

cycle of the booster, the threshold does not vary 
very much, dropping to about 92% of its injection 
value for ZOO-MeV output, and to about 66% of its 
injection value for 630-MeV output. However, the 
injection value is an upper limit to the thresh- 
old, so if it is used as a measure of stability 
it should be treated conservatively. 

The Brookhaven AGS has a yt - 8.75 and oper- 
ates at present between 50 MeV (v = 1.05) and 
33 GeV (v = 36.2), whence the range of (v/yt) is 
from 0.12 to 4.1, almost the entire range shown 
in Fig. 1. The threshold decreases monotonically 
to about zero at transition and then increases 
again (see Section V). Here the value of the 
threshold at injection is no guarantee of sta- 
bility - the AGS will always be unstable near 
transition, and the problem is one of making the 
time of traverse of the unstable region so small 
that the beam degeneration will not have had 
enough time to build up to a dangerous value. 

IV. Numerical Applications 

We first calculate a rough but useful formula 
for threshold at injection, bearing in mind that 
this may or may not be a relevant figure for the 
machine as a whole. 

Consider Eq. (16). Let us try to make it 
more workable. Assume limits on qs at one extreme 
to be 150° or 30' (which corresponds to a normal 
working value), and at the other extreme to be 
175' or 5O (which corresponds to an attempt to get 
a very high capture efficiency at injection, per- 
haps by lowering the rise rate of the external 
magnetic field or distorting the R.F wave). Then 
the bunching factor B would varyll from 0.36 up to 
0.56 and the absolute value of the quantity in 
square brackets would vary from 0.68 to 1.74. If 
we assume reasonable values of between 2 and 3 for 
IU'I and say 2 for (Z,/30), we would have 

fi 1 + (~o,30) / C(n - 2cps) sin ms - 2 cos rp,] 1 

- 0.054 to 0.32 . (18) 

Then, if we express the accelerator radius R in 
meters and the peak cavity voltage Vm in 
kilovolts, we can rewrite (16) as 

Nbt - (0.38 to 2.2) x d1 (Rmeters) t 'V, kv) y2 

(injection) (19) 

where the first figure corresponds to an unen- 
a~~E"i':p:u::s,'::~~~e~~th.~ = 150° or 30' and to 

3, and the second fig&e to values of 175O 
. 

The radius of the Cosmotron9 - and for that 
matter the approximate radius of most 3-GeV proton 
machines - is about 11 meters. There is one accel- 
erating gap (N = l), the RF is at the fundamental 
(h = 0, and the peak voltage Vm is about 2 kV. 
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The value of cps is about 30° and injection takes 
place at about 3.6 MeV. Hence the variable factor 
in Eq. (19) is of the order of 0.38 to 0.57 and 

N bt - (8 to 13) 

which was just about 
we must consider the 
tron always operates 
stability will be of 
we use Eq. (13) with 1m 

x loll (C osmotron at (20) 
Injection) 

the operating value. Hence 
rise time. Since the Cosmo- 
above transition, the in- 
the negative-mass type. If 
the estimates B - 0.36, 

II - 40-45, Nb - lo“, we find that at injection the 
standard rise time is very fast, about 2 LLS, so 
that more than 1012 or so particles would be de- 
stroyed quickly before the threshold had a chance 
to rise, 

Consider now the proposed booster, 10 
which is 

to have a radius of 10.8 m and is to accelerate 
from 50 MeV to (if necessary) 1 GeV in 130 ms. We 
find that the required energy gain per turn 
(N Vm sin ys) is about 2.4 keV. Hence, depending 
on the value of (ps, N Vm will vary from 5 to 27.5 
keV. Since (except possibly at the top extreme) 
this can be done with one gap, we assume N = h = 1, 
whence from Eq. (19), at injection, 

N bt - (2.3 to 70) x 1012 particles (21) 

(booster at injection) . 

The very wide range arises because N Vm sin cps, 
rather than N Vm , is stipulated to be fixed. As 
discussed in the preceding section, the value of 
Nbt drops slightly as the energy increases. Never- 
theless, we see that, with a very efficient bunch- 
ing system, the machine will be stable not only in 
Phase I o the Brookhaven AGS Improvement Program 
(about 10 f3 particles) but in Phase II (2 x 1013 
particles) as well. But one cannot use a nominal 
value of 9s without any thought. 

We might note incidentally the rise time; 
here the instability will always be resistive. 
From Eq. (13), with n - 120, Nb - 2 Y 1013, we find 

rN - 0.2 cs ; from Eq. (4), kaking o- 1016 set-1 
and hence /w - 10s3 cm* , we find 
v/u - 2 x lo-5 whence from Eq. (14) TR - 20 ms at 
injection. The value is about a third of this 
(three times as fast) at a 630-MeV extraction. 
These times are enough less than the boosting 
times (about 80 ms to get up to 630 MeV) that it is 
indeed necessary to take care to be below the par- 
ticle threshold. 

The situation with the Brookhaven AGS is very 
different. The threshold is very high,for the 
machine12 has a radius of 125 meters, and has N=h 
and Vm = 15 keV, whence 

(0.79 to 4.6) ,( 50 MeV) 

Nbt - ((1.05 to 6.1)) x 1014 particles 
(1.67 to 9.7) 

{(200 MeV)} 
(500 MeV) 

(AGS at injection) (22) 

But the problem is not at injection but at transi- 
tion. This is a complex calculation indeed. What 
we shall do here is make rough calculations of 
(A) how long the AGS is below threshold, and (B) the 
(minimum) rise time constant of the instability. By 
comparing these two quantities we can get a rough 
idea of whether or not there will be longitudinal 
instability problems, 

(A) Duration of the Instability - Let 6y be the 
half-width (not to be confused with &, the half- 
spread of y in the beam) of '{ during which the 
machine will be unstable. If we assume yi"l <<yt, 
6Y c-c Yt > then from Eq. (17), we can show that the 
half-width &y depends on the number of particles in 
the beam and the injection threshold as 

hy+(yt$-y3 . (23) 
i 

Now the energy of the protons increases about 
100 MeV in 3 ms,12 so that half of the total time 
during which the system is unstable is 

6t = 0.25 (~~1~~1~'~ seconds . (24) 

[The numerical factor in Eq. (24) is not precisely - 
one-fourth, merely 0.25 to two decimal places.] We 
enter figures in the first row of Table I, where we 
consider three values of Nb : the present AGS 
(2 x 1012), the improved AGS in Phase I (1013) and 
in Phase II (2 x 1013). In each case the two fig- 
ures correspond to extremes in Eq. (22). 

Improved Improved 

Np_';s;l;;12 ,'":";0:3 
Phase II 

N= 2 x lo13 

Half-time in 
unstable zone 1.9 - 0.18 11 - 1.0 15 - 1.4 
6, , *s 

Minimum rise 0.51 - 1.5 0.12 - 0.35 0.074 - 0.22 
time TN , ms 

Ratio $/TN 4-0.1 90- 3 2ooz--- 

Remarks OK 1 ? ?? 

TABLE I 
AGS Behavior Near Transition 

(B) Minimum Rise Time - The instability will exist 
as a resistive one during the first half of the 
crossing time and as a negative mass one during the 
second half. If we assume n - 2250 and again 

J--lo -3 Cl& 

v/u - 0.01. Hence :e 
we find from Eq. (4) the value 

simply ignore what happens 
during the resistive part and just find ~~ from 
Eq. (13). We see from (13) that the rise rate is 
zero precisely at transition. Its value at an 
amount &v away is obtained by replacing l/v3 by 
11-d and rl by 26yly: ; if we replace the terms in 
square brackets in Eq. (13) by 3, we get a minimum 
rise time at the threshold point (which corresponds 
to Nb particles) of 
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lo12 N. 112 
(7N)min - 0.19 ( --& B 

Nb Nb inj 
Ins (25) 

where we have used (10) and (23). We calculate 
this for the cases we are considering and put the 
result in Table I, second row. 

The relevant figure is the number of TN time 
constants in half the unstable zone crossing time; 
this is listed in the third row of Table I. As we 
pointed out, if the number in the third row is as 
much as 15 or 20 there may be trouble. 

V. Discussion 

The same general conclusion would appear to 
follow for the AGS as for the proposed boosters - 
with some care, there will probably be no trouble 
in Phase I (Nb = 1013), and with somewhat more 
care, there should be no trouble in Phase II 
(Nb = 2 x 1013). But the injection synchronous 
phase angle must be chosen closer to 0' or 180° 
than one normally would. 

The choice of phase angle is much more im- 
portant than one would think - particularly in 
connection with the behavior of the AGS at tran- 
sition - because of the many ways in which if af- 
fects the stability. A larger bunching factor 
raises the threshold by making the beam more uni- 
form. Further, the corresponding larger synchro- 
tron oscillation amplitude means greater energy 
spread and hence greater protection against insta- 
bilities. And the larger bunching factor means a 
slower rise rate. More experimental work in this 
field would be very useful. 

This entire AGS transition calculation is of 
course extremely crude and serves only to point 
out that there may be problems and that the choice 
of qs is crucial; this crudity comes from assuming 
that (1) the WKB formulas hold at transition; (2) 
the energy spread is so small that the system is 
monoenergetic even at transition; (3) the theory 
of Neil and Sessler3 holds at transition; (4) the 
"average" rise time is two or three times the min- 
imum; (5) the beam breaks up in five or ten time 
constants; (6) the relevant n is given by 
Eq. (15). [For a more extensive discussion see 
BNL AADD-128,] 

So a more careful analysis of what happens at 
transition is the next step. It is important that 
stronger predictions be made about these longitu- 
dinal instabilities. For in contrast to trans- 
verse instabilities, they cannot be servoed away, 
and the only static scheme for suppressing them,13 
which involves coating the inside of the vacuum 
chamber probably with an oxide, raises problems of 
vacuum maintenance and radiation damage, as well 
as breaking down theoretically at the high fre- 
quency limit, just where the instability is worst. 
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Fig. 1. Universal threshold curve: relative longitudinal 
instability threshold as a function of energy 
throughout the acceleration cycle. 
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